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Preface 

 

The International Energy Agency 

The International Energy Agency (IEA) was established in 1974 within the framework of the Organisation for 

Economic Co-operation and Development (OECD) to implement an international energy programme. A basic 

aim of the IEA is to foster international co-operation among the 28 IEA participating countries and to increase 

energy security through energy research, development and demonstration in the fields of technologies for 

energy efficiency and renewable energy sources.  

 

The IEA Energy in Buildings and Communities Programme 

The IEA co-ordinates research and development in a number of areas related to energy. The mission of the 

Energy in Buildings and Communities (EBC) Programme is to develop and facilitate the integration of 

technologies and processes for energy efficiency and conservation into healthy, low emission, and 

sustainable buildings and communities, through innovation and research. (Until March 2013, the IEA-EBC 

Programme was known as the Energy in Buildings and Community Systems Programme, ECBCS.) 

The research and development strategies of the IEA-EBC Programme are derived from research drivers, 

national programmes within IEA countries, and the IEA Future Buildings Forum Think Tank Workshops. The 

research and development  (R&D) strategies of IEA-EBC aim to exploit technological opportunities to save 

energy in the buildings sector, and to remove technical obstacles to market penetration of new energy efficient 

technologies. The R&D strategies apply to residential, commercial, office buildings and community systems, 

and will impact the building industry in five focus areas for R&D activities:  

 Integrated planning and building design 

 Building energy systems 

 Building envelope 

 Community scale methods 

 Real building energy use 

 

The Executive Committee 

Overall control of the IEA-EBC Programme is maintained by an Executive Committee, which not only monitors 

existing projects, but also identifies new strategic areas in which collaborative efforts may be beneficial. As 

the Programme is based on a contract with the IEA, the projects are legally established as Annexes to the 

IEA-EBC Implementing Agreement. At the present time, the following projects have been initiated by the IEA-

EBC Executive Committee, with completed projects identified by (*): 

Annex 1:  Load Energy Determination of Buildings (*) 

Annex 2:  Ekistics and Advanced Community Energy Systems (*) 

Annex 3:  Energy Conservation in Residential Buildings (*) 

Annex 4:  Glasgow Commercial Building Monitoring (*) 

Annex 5:  Air Infiltration and Ventilation Centre  

Annex 6:  Energy Systems and Design of Communities (*) 

Annex 7:  Local Government Energy Planning (*) 

Annex 8:  Inhabitants Behaviour with Regard to Ventilation (*) 

Annex 9:  Minimum Ventilation Rates (*) 

Annex 10:  Building HVAC System Simulation (*) 

Annex 11:  Energy Auditing (*) 

Annex 12:  Windows and Fenestration (*) 

Annex 13:  Energy Management in Hospitals (*) 

Annex 14:  Condensation and Energy (*) 

Annex 15:  Energy Efficiency in Schools (*) 



Annex 16:  BEMS 1- User Interfaces and System Integration (*) 

Annex 17:  BEMS 2- Evaluation and Emulation Techniques (*) 

Annex 18:  Demand Controlled Ventilation Systems (*) 

Annex 19:  Low Slope Roof Systems (*) 

Annex 20:  Air Flow Patterns within Buildings (*) 

Annex 21:  Thermal Modelling (*) 

Annex 22:  Energy Efficient Communities (*) 

Annex 23:  Multi Zone Air Flow Modelling (COMIS) (*) 

Annex 24:  Heat, Air and Moisture Transfer in Envelopes (*) 

Annex 25:  Real time HVAC Simulation (*) 

Annex 26:  Energy Efficient Ventilation of Large Enclosures (*) 

Annex 27:  Evaluation and Demonstration of Domestic Ventilation Systems (*) 

Annex 28:  Low Energy Cooling Systems (*) 

Annex 29:  Daylight in Buildings (*) 

Annex 30:  Bringing Simulation to Application (*) 

Annex 31:  Energy-Related Environmental Impact of Buildings (*) 

Annex 32:  Integral Building Envelope Performance Assessment (*) 

Annex 33:  Advanced Local Energy Planning (*) 

Annex 34:  Computer-Aided Evaluation of HVAC System Performance (*) 

Annex 35:  Design of Energy Efficient Hybrid Ventilation (HYBVENT) (*) 

Annex 36:  Retrofitting of Educational Buildings (*) 

Annex 37:  Low Exergy Systems for Heating and Cooling of Buildings (LowEx) (*) 

Annex 38:  Solar Sustainable Housing (*) 

Annex 39:  High Performance Insulation Systems (*) 

Annex 40:  Building Commissioning to Improve Energy Performance (*) 

Annex 41: Whole Building Heat, Air and Moisture Response (MOIST-ENG) (*) 

Annex 42:        The Simulation of Building-Integrated Fuel Cell and Other Cogeneration  

                        Systems (FC+COGEN-SIM) (*) 

Annex 43:        Testing and Validation of Building Energy Simulation Tools (*) 

Annex 44: Integrating Environmentally Responsive Elements in Buildings (*) 

Annex 45: Energy Efficient Electric Lighting for Buildings (*) 

Annex 46:        Holistic Assessment Tool-kit on Energy Efficient Retrofit Measures for Government Buildings  

                        (EnERGo) (*) 

Annex 47: Cost-Effective Commissioning for Existing and Low Energy Buildings (*) 

Annex 48: Heat Pumping and Reversible Air Conditioning (*) 

Annex 49: Low Exergy Systems for High Performance Buildings and Communities (*) 

Annex 50: Prefabricated Systems for Low Energy Renovation of Residential Buildings (*) 

Annex 51: Energy Efficient Communities (*) 

Annex 52: Towards Net Zero Energy Solar Buildings (*) 

Annex 53: Total Energy Use in Buildings: Analysis & Evaluation Methods (*) 

Annex 54: Integration of Micro-Generation & Related Energy Technologies in Buildings 

Annex 55: Reliability of Energy Efficient Building Retrofitting - Probability Assessment of  

 Performance & Cost (RAP-RETRO) 

Annex 56: Cost Effective Energy & CO2 Emissions Optimization in Building Renovation 

Annex 57: Evaluation of Embodied Energy & Greenhouse Gas Emissions for  

 Building Construction 

Annex 58: Reliable Building Energy Performance Characterisation Based on Full Scale  

 Dynamic Measurements  

Annex 59: High Temperature Cooling & Low Temperature Heating in Buildings 

Annex 60: New Generation Computational Tools for Building & Community Energy Systems 

Annex 61: Business and Technical Concepts for Deep Energy Retrofit of Public Buildings 

Annex 62:  Ventilative Cooling 

Annex 63:  Implementation of Energy Strategies in Communities 

Annex 64:  LowEx Communities - Optimised Performance of Energy Supply Systems with 



 Exergy Principles 

Annex 65:  Long-Term Performance of Super-Insulating Materials in Building Components  

  and Systems 

Annex 66:  Definition and Simulation of Occupant Behavior in Buildings 

Annex 67:  Energy Flexible Buildings 

Working Group - Energy Efficiency in Educational Buildings (*) 

Working Group - Indicators of Energy Efficiency in Cold Climate Buildings (*) 

Working Group - Annex 36 Extension: The Energy Concept Adviser (*) 
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1.1 Introduction 

1.1.1 Annex 55 and Subtask 2 

The importance of identifying, characterising and displaying the uncertainties on the results of 

analyses and designs of complex systems is progressively more recognised: many regulatory 

standards and guidelines explicitly demand an uncertainty appraisal as part of a performance 

assessment of structures, systems and solutions (Helton and Burmaster, 1996).  This appraisal 

of uncertainties is naturally connected to the concepts of ‘reliability’ and ‘robustness’.  Reliabi-

lity can be defined as the probability for the system to function without a failure during a given 

interval of time, robustness can be described as the persistence of the characteristic behaviour 

of a system under uncertain conditions.  Reliability, in essence, concerns the probability of fai-

lure, while robustness more generally relates to the probability of a certain performance level.  

But both concepts fundamentally require the assessment of probabilities, calling for the appli-

cation of probabilistic methodologies rather than deterministic techniques.  Or, to quote Ober-

kampf and co-authors (2002), all “realistic modelling and simulation of complex systems must 

include the non-deterministic features of the system and the environment”. 

The appraisal of the life-cycle gains and costs of a building retrofit is an example of such a com-

plex system, in which the non-deterministic features may originate from stochastic variations 

in materials, workmanship, user behaviour, economic scenarios, ...  Annex 55 therefore aims at 

providing a foundation for the integration of probabilistic approaches in analyses and designs 

of hygrothermal performances of buildings.  This foundation is to consist of four parts: 

1. an overall framework and methodology for probabilistic analysis and design in relation 

to hygrothermal performances of buildings (subtask 3); 

2. probabilistic tools that permit qualitative and quantitative assessment of the impacts 

of the non-deterministic features in these (subtask 2);  

3. data sets characterising the stochastic variations of influencing parameters, for use in 

the qualitative and quantitative methods  (subtask 1); 

4. guidelines for application of the general framework, probabilistic tools and stochastic 

inputs for reliability-based analysis and design (subtask 4); 

The primary objective of Annex 55’s Subtask 2 therefore is to appraise the advantages and dis-

advantages of existing probabilistic methods for qualitative and quantitative assessment with 

relation to their applicability within the particular context of building performance analysis and 

design.  Subtask 2 does hence not intend to develop new probabilistic tools, instead it aims at 

familiarizing building physical engineers and researchers with the possibilities and limitations 

of existing probabilistic tools adopted from various other fields.  When applied within the over-

all probabilistic framework of Subtask 3, based on the guidelines for use of Subtask 4, and fed 

with the stochastic data from Subtask 1, these tools will allow the non-deterministic appraisal 

of the life-cycle gains and costs of a thermal building retrofit, with attention for both the po-

tential improvement as well as possible degradation resulting from such upgrades of residenti-

al buildings. 
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1.1.2 Sets of probabilistic tools 

Five sets of tools are required for probabilistic assessments, each with a distinct purpose: 

1. qualitative exploration: 

 to identify all relevant parameters, and the relations between them; 

2. uncertainty propagation: 

 to quantify the probabilistic character of the assessment’s outcome; 

3. sensitivity analysis:  

 to determine the dominant and the non-dominant input parameters; 

4. metamodelling method:  

 to formulate a simple surrogate model, to replace the original model; 

5. economic optimisation:  

 financial criteria and optimisation schemes to attain the best solution; 

The latter may not be a pure probabilistic tool in itself, but there are sufficient implicit links to 

include it here.   

These five sets of probabilistic tools each form the topic of a Common Exercise in Subtask 2, all 

aiming at evaluating the capabilities and limitations of different available methods.  These five 

sets of probabilistic tools moreover are the respective subject of the following chapters, which 

constitute the main report for Subtask 2.  Below, these five tool sets, and their respective func-

tion in any probabilistic assessment, are first illustrated with a clear-cut example from another 

field, in Section 1.2.  Subsequently, the five Common Exercises of Subtask 2 are presented in 

Section 1.3, each centred on one of the five sets of probabilistic tools.  
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1.2 First illustration 

1.2.1 Improving a supply network 

The different sets of the required suite of probabilistic tools are put forward via an easy exam-

ple from another engineering discipline, a supply system for electricity.  This system consists of 

a turbine, fed by a main fuel and a backup fuel, and distributing electricity via a cable network.  

The owner of the electricity supply system wants to avoid all expenses related to power outa-

ges, but not at all costs of course, since the avoided expenses should be in balance with the in-

vestments needed to improve the reliability of the system. 

1.2.2 The probabilistic assessment 

First, the possible influence factors related to all possible gains and costs of investments to im-

prove the reliability of the electricity supply system are to be identified, via a qualitative explo-

ration.  As a first step, the analysis focuses on the basic failure modes of the system, the eco-

nomic aspects are integrated at a later stage.  The electricity supply system fails when the con-

sumer no longer receives electricity, which happens if either the cable network is damaged or 

if the engine is stopped, which in turn is presumed to occur if both main and backup fuel come 

to depletion.  This assessment, merging identification and organisation of hazards, can be pre-

sented as a fault tree, tying all elements of the assessment logically together (Figure 1.1). 

 

 

Figure 1.1: Fault tree for the electricity supply network and its primary components 

 

Next, the assessment moves on to uncertainty propagation, in which the failure probability of 

the electricity supply system is explicitly calculated.  Based on information on the reliabilities 

of the fuel supplies and of the cable network, one estimates that each component – main fuel, 

backup fuel, cable network – has a 1 % chance of failure.  So at any moment in time, there is a 

one percent probability that any of the three components does not deliver.  Based on the rules 

of probability calculus, the probability of engine failure (due to a lack of fuel) becomes 0.0001, 

and the probability of total system failure become 0.0101.  These figures can now be added to 

the fault tree in Figure 1.1. 
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After that, the assessment turns to identifying these factors that may have a considerable im-

pact on the failure rate of the electricity supply network, as these are the prime factors to con-

sider when planning an enhancement of the system’s reliability.  The results of this sensitivity 

analysis are straightforward: reducing the failure probability of the main or backup fuel to zero 

only has a limited impact (total failure rate 0.01 instead of 0.0101), while decreasing the failure 

probability of the cable network to zero has a crucial effect (total failure rate 0.0001 instead of 

0.0101).  In this very simplified case hence, improvements are to concentrate on the cable net-

work rather than the fuel supplies. 

At this point in the analysis, one could go back to the start, to further refine the significant in-

fluence factors, which is here the failure of the cable network.  One could further detail its fail-

ure rate, assess the failure rate reductions for different possible measures,  document the rele-

vant investment and penalty costs, …  For this example, the additional input data are kept re-

stricted to the gains and costs of possible measures.  A 10,000 € investment reduces the failure 

rate of the cable network to 0.005, while a further reduction to 0.002 would cost an additional 

80,000 €, whereas the system failure penalty amounts to 10,000,000 €. 

The current example comprises an easy to compute case, which precludes the need for a sur-

rogate model.  But, if the quantification of failure rates and its related expenses would require 

a large computational effort for example, then the formulation of a surrogate model through a 

metamodelling method should be considered.  Such a metamodel is a simpler and faster stand-

in for the original model, which is hence easier to use in the assessment.  To do so, a limited 

number of scenarios with different input values could be run, and a simple relation between 

relevant inputs and outputs could be derived, for example with linear regression. 

As a final step, the economic optimisation can be executed.  For this case, only three design op-

tions are to be judged: no investment, investing 10,000 €, or investing 10,000 € plus 80,000 €.  

That first alternative is the neutral choice: nothing lost, nothing gained.  The second possibility 

invests 10,000 € to save 10,000,000 € 0.5 % of the time: the expected value of the costs thus is 

10,000 euro, the expected value of the gains is 50,000 €.  For the third option these numbers 

become respectively 90,000 € and 75,000 €.  The second possibility thus compares positively to 

the neutral choice while the third option on the other hand results in a negative balance.   

1.2.3 Conclusion and continuation 

While this simple example has allowed an introductory explanation of the five primary sets of 

probabilistic tools, their application to building physical analyses and designs comes with more 

facets and details, which will be illustrated via more complex thermal building retrofit cases in 

the following chapters.  Before turning to those though, the five Common Exercises of Subtask 

2 are concisely presented in Section 1.3 below. 
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1.3 Common Exercises 

1.3.1 Common Exercises in Subtask 2 

Subtask 2 of Annex 55 targets the evaluation of the advantages and disadvantages of available 

methods for probabilistic assessment, categorised in five sets of tools: qualitative exploration, 

uncertainty propagation, sensitivity analysis, metamodelling method, and economic optimisa-

tion.  The appraisal of the five tool sets has been performed via five respective Common Exer-

cises (CE), all of which involved the execution of a particular assignment by multiple Annex par-

ticipants.  Each of these five CE’s will come back in the following five chapters, but here an ini-

tial presentation is given as a general framework. 

1.3.2 Qualitative exploration: CE1 

Common Exercise 1 set out to evaluate the capabilities and limitations of qualitative explora-

tion methods within the context of building performance assessments.  The CE1 objective was 

a factor identification and flowchart formation analysis of different post-insulation options for 

a brick cavity wall, considering both the gains by decreased energy consumption and the costs 

due to potential hygrothermal damage (see Addendum 1 for more info).  Such qualitative ex-

ploration could in a next stage support a quantitative comparison.   

Figure 1.2 depicts the case considered in CE1: a cavity wall section of a typical mid-century Da-

nish villa is to be thermally upgraded.  Three main options exist for the thermal upgrade of this 

cavity wall: internal insulation, external insulation or cavity filling.  Each of these has a different 

potential efficiency for reduction in building energy consumption and a different potential risk 

for hygrothermal damages.  The primary objective of CE1 was a flowchart for the probabilistic 

evaluation of the energy consumption and hygrothermal damage.  The flowchart should not 

only identify all factors potentially affecting the energy consumption and hygrothermal dama-

ge, but also logically connect all these potential influence parameters to the final estimation of 

energy consumption and hygrothermal damage. The application and/or evaluation of different 

methods for factor identification and flowchart formation to that aim then allowed judging the 

respective advantages and disadvantages of these methods. 

   

                

Figure 1.2: Schematic overview of the configuration for CE1. Snit i gavl

Snit i gavl

120       90      120  10 

Snit i gavl



Annex 55 RAP-Retro           Subtask 2: Probabilistic tools 7 

An exemplary partial outcome of the qualitative exploration analysis is presented in Figure 1.3.  

This flowchart focuses on one aspect of hygrothermal damage, particularly the deterioration of 

the interior finishing due to surface condensation and/or mould growth.  The flowchart hence 

identifies all interacting parameters and organizes their interwoven relations.  From the chart, 

it becomes clear that assessing the probability of degradation requires information about the 

ventilation, the workmanship, … 

 

Figure 1.3: Illustrative outcome of CE1 - Bayesian probalistic net for ‘deterioration of interior fi-
nishing’ 

1.3.3 Uncertainty propagation: CE2 

The capabilities and limitations of uncertainty propagation methods for building performance 

applications have been investigated exploratorily in CE2 for a particular retrofitting solution at 

the building component level.   The topic was the probabilistic prediction of energy savings and 

mould growth for the application of interior insulation on an existing massive masonry wall.  To 

simplify the hygrothermal assessment, a one-dimensional wall section was applied as starting 

point.  This allows investigating different stochastic methodologies for a well-described one-di-

mensional HAM-problem (HAM: Heat, Air and Moisture), currently typically assessed by deter-

ministic analyses. 

Figure 1.4 presents a schematic overview of the problem: an outer brick layer (uniform layer of 

29 cm thick) is renovated with interior insulation (6cm) and finished at the inside with a coated 

gypsum board.  The wall is assumed to be perfectly airtight and is submitted to variable indoor 

and outdoor climates.  The hygrothermal material properties of the different layers have been 

provided (see Addendum 2 for more info), wherein some of them treated as stochastic varia-
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bles, with given distribution functions.  Also the orientation of the wall and the ventilation rate 

governing the indoor climate are variable inputs for the assessment.  The hygrothermal res-

ponse of the wall had to be calculated for one year, starting from July 1st until June 30th.  To 

evaluate the benefits and risks of the retrofit measure, both the wall heat loss and the mould 

growth risk were to be analysed.  The thermal performance of the wall was judged by the cu-

mulative heat losses during the month of January calculated at the interior surface.  The risk on 

mould growth had to be judged at the interface between interior insulation and masonry wall.  

This was based on a simplified mould growth model, inspired by the VTT mould prediction mo-

del [Viitanen and Ojanen, 2007], in which a mould growth index is calculated based on the pre-

dicted local relative humidity.  As output, the evolution of the mould growth index had to be 

given as a function of time.  As an example, figure 1.5 presents the variability of the evolution 

of the heat losses for the month of January and the increase of the mould growth index over 

the year, as predicted by one of the participants.  The reference case, in which the mean va-

lues of the stochastic variables are taken as deterministic values, is plotted in red. 

 

Figure 1.4: Schematic overview of the configuration for CE2. 

 

  

Figure 1.5: Illustrative outcome of CE2 - Predicted cumulative heat loss per m² for January (left), 
evolution of the mould growth index over the year (right).  The reference case is plotted in red. 
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1.3.4 Sensitivity analysis: CE3 

Common Exercise 3 aimed at an evaluation of the capabilities and limitations of sensitivity ana-

lysis methods for building performance analysis and design.  However, as CE2 had shown that 

the influence of deviations due to the HAM simulation environment used were bigger than the 

differences between uncertainty quantification methods, CE3 started with an initial uncertain-

ty propagation component.  To avoid interferences caused by differing HAM tools, a common 

simulation model for a cold attic (Hagentoft, 2011) was used by all participants in the exercise.  

This cold attic model relates the heat loss to and mould growth in a cold attic to 15 stochastic 

input parameters, related to climate, material, geometry and construction characteristics. 

The topic of CE3 hence was an uncertainty propagation and a sensitivity analysis for the hygro-

thermal behaviour of cold attics, with as main aims the reintroduction of uncertainty propaga-

tion methods and the exploration of sensitivity analysis approaches.  The choice of techniques 

was free for both aspects, and CE3 hence generally targeted a comparison between different 

methods.  The analysis considered the hygrothermal behaviour of a cold attic, for which heat 

and mass balances were solved in a Matlab model.  The model links 15 input parameters to 2 

output variables: the cumulated heat loss to the attic and the peak mould growth in the attic 

(see Addendum 3 for more info).  The input parameters are collected in Table 1.1, with their 

respective probability distributions.  Two different distribution types are applied: uniform U(lo-

wer limit, upper limit) and normal N(average, standard deviation) distributions. 

A typical outcome of the sensitivity analysis is depicted in Figure 1.6, which presents the stan-

dardised regression coefficients for the cumulated heat loss to the attic.  It becomes clear that 

this heat loss is primarily governed by the ceiling’s U-value and the roof’s R-value, and to a les-

ser degree by indoor temperature and ceiling leakage area.  Other parameters, especially these 

not included in the graph, do not impact the heat loss significantly. 

Table 1.1: variable input parameters, .m-file symbol, probability distribution 

Area of ceiling and roof (m2) U(50,200) 

Length of building (eave side) (m) U(7,20) 

Height of building H (m) U(4,8) 

Leakage area per m2 of ceiling (m2/m2) U(0.001,0.05)** 

Venting area per meter eave (m2/m) U(0.001,0.05) 

Indoor temperature (°C) N(20,1.5) 

Indoor moisture supply (kg/m3) N(0.005,0.002) 

Year of climate data used (-) U(1,30)* 

Orientation of one of eave sides (-) U(0,180) 

U-value of the ceiling (W/m2K) U(1,5)** 

Resistance of roof insulation (m2K/W) U(0,1) 

Thickness of wooden underlay (m) U(0.010,0.020) 

Thermal conductivity of wood (W/mK) N(0.13,0.02) 

Vapour diffusivity of wood (m2/s) N(10-6,2 10-7) 

Initial relative humidity of wood (-) U(0.5,0.9) 

        *only discrete integers  **excessively high values 
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Figure 1.6: Illustrative outcome of CE3 – Standardised regression coefficients for the relation 
between the cumulated heat loss and the 15 input parameters.  Non-mentioned parameters do 

not have any significant impact. 

1.3.5 Metamodelling method: CE4 

The capabilities and limitations of metamodelling methods for surrogate simulation for building 

performance assessments have been examined empirically in CE4, again via the cold attic mo-

del employed in CE3.  Metamodelling techniques are a crucial element of probabilistic tools, as 

the execution time for the deterministic core model often is a restrictive factor.  This implies 

that only a small number of runs are actually feasible, which obstructs most standard methods 

for uncertainty propagation, sensitivity analysis or performance and robustness optimization.  

To resolve this, an approximate surrogate model – or metamodel – is derived from a small set 

of initial results, which is then applied instead of the original model for the further investigation 

and/or optimization.  The main aim of CE4 was thus to explore the effectiveness and efficiency 

of different meta-modelling methods.  As simulation time is a primary motivation for metamo-

delling though, the impact of the initial set size formed an important auxiliary focal point.   

In this CE, the main aim of the metamodelling efforts was ‘design space approximation’: the 

goal was to obtain a quicker approximate model to stand in for the original model, mimicking 

the original model as good as possible over the entire parameter space.  The quality of the re-

sulting metamodels was assessed by comparing their outcomes to the outcomes of the original 

model at 100 reference points in the parameter space.  These 100 reference points were how-

ever not be used in the development of the metamodel (see Addendum 4 for more info).  
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Two results of the metamodelling exercise are shown in Figure 1.7, which demonstrates the fine 

agreement for the cumulated heat loss (CHL) and the less nice concurrence for the peak mould 

growth (PMG).  On the vertical axes, the original model results are shown, versus the metamo-

del results on the horizontal axes.  

 

 

Figure 1.7: Illustrative outcome of CE4 – Comparison of results of original model and metamo-
del for cumulated heat loss (top) and peak mould growth (bottom). 

1.3.6 Economic optimisation: CE5 

In the last common exercise CE5 the developed methodology was applied in a generic way by 

making decisions on retrofitting measures for a typical building stock and from an economic 

perspective. To do so, participants were asked to ‘take up’ the function of a consultant for an 

ESCO (Energy Saving Company) that will renovate the attics of 237 dwellings in a neighbour-

hood. To limit the work load, the same cold attic model of CE3 and CE4 is used, but instead of 

the earlier cumulative heat loss and peak mould growth indicators, the overall cost is consider-
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ed the main performance criterion.  Different renovation measures (such as adding attic floor 

insulation, increasing air tightness of ceiling, closing ventilation gaps,…) could be applied (and if 

relevant combined), but of course each renovation measure corresponds to a certain cost, will 

result in certain benefits (energy savings) and may result in hygrothermal risks (mould growth). 

Goal of the common exercise was to come up with the renovation measure (applicable to all 

dwellings) that results in the largest overall profit within a timespan of ten years. 

The original state of the building was described by probability density functions of all variable 

input parameters as in CE3 (see Table 1.1). For the different renovation measures, optimal 

target values had to be determined. For each target value, the finally obtained value was pre-

sumed to have a normal distribution around this target value due to uncertainties in workman-

ship. Of course, each of these renovation measures corresponds to a certain cost, as given in 

Table 1.2. 

Table 1.2: costs related to the different renovation measures 

renovation measure cost  

1.insulating attic floor 8.0+1.2*(1/Uc
new - 1/Uc

old)  euro/m² 

2. increasing air tightness of attic floor 5.0+3.0*10-7/Ac
new  euro/m² 

3.sealing ventilation gaps at the eaves 12.0 + 3.0*10-4/Ae
new euro/m 

Repair cost if PMG > 5 58.0 euro/m² 

 

The largest overall profit within a time span of 10 years had to be evaluated based on the net 

present value (NPV), simplified to: 

NPV = −𝐼0 − 𝐼𝑀 + ∑
∆𝐾𝐸(1 + 𝑟𝐸)𝑖

(1 + 𝑎)𝑖

10

𝑖=1

 

in which I0 corresponds to the initial investment of the renovation measure, IM is the mainte-

nance cost, ΔKE the change in annual energy costs due to the renovation measure, rE the infla-

tion corrected mean annual increment in energy cost (0<rE<1) and a the inflation corrected 

present value factor (0<a<1). Detailed information on all input parameters and variations are 

given in Addendum 5. 

As increasing the insulation level of the attic floor can be seen as the first and easiest choice 

for an ESCO to apply, participants were requested to determine first the optimal U-value of the 

ceiling when no other renovation measures are applied. As an example the graph at the top of 

Figure 1.8 shows the outcome as determined by one of the participants, both when only the 

benefits are taken into account (indicated as ‘no repair costs’) as well as when the repair costs 

for attics with mould growth is incorporated in the NPV (indicated as ‘with repair costs’).  The 

bottom graph depicts the corresponding cumulative distribution function of the dwelling stock 

with and without repair costs, as well as the cdf of the most optimal renovation scenario for all 

dwellings. This kind of figures clearly illustrates the advantages of the developed probabilistic 

methodology.  Further information and interpretation can be found in Chapter 6. 
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Figure 1.8: Illustrative outcome of CE5 – The total NPV (sum for all dwellings and over a time 
span of ten years) as a function of the target U-value of the ceiling when applied to all 237 

dwellings (top) and corresponding cdf of the NPV for each dwelling for the optimal solutions 
(bottom). 

  

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

0 0.2 0.4 0.6 0.8

N
P

V
to

t
[e

u
ro

]

Uc,target [W/m²K]

no repair costs

with repair costs

Uc,target optimal

0.00

0.25

0.50

0.75

1.00

-10000 -5000 0 5000 10000 15000 20000 25000 30000 35000

cd
f

NPVopt [euro]

no repair costs

with repair costs

with repair costs
optimal solution



Annex 55 RAP-Retro           Subtask 2: Probabilistic tools 14 

1.4 Summary 

In this chapter a concise introduction on probabilistic tools was given. The five primary sets of 

probabilistic tools: qualitative exploration, uncertainty propagation, sensitivity analysis, meta-

modelling and economic optimisation have been presented and illustrated via an easy example 

from another engineering discipline.  Hereafter, the different Common Exercises of Subtask 2 

have been shortly presented.  Each of these Common Exercises went more in detail on one of 

the five sets. This way the application of typical probabilistic tools to hygrothermal analysis and 

design of building retrofits could be investigated.  In Chapters 2 to 6, each set of tools is inves-

tigated and illustrated in more detail, to finally come to a conclusive quantification methodolo-

gy in Chapter 7.  
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2.1 Introduction 

2.1.1 Annex 55 and Subtask 2 

The prime objective of Annex 55’s Subtask 2 is to appraise the advantages and disadvantages 

of existing probabilistic methods for qualitative and quantitative assessment with regard to 

their applicability within the particular context of building performance analysis and design.  

Five sets of tools have been identified for probabilistic assessments, each with a distinct goal: 

1. qualitative exploration: 

 to identify all relevant parameters, and the relations between them; 

2. uncertainty propagation: 

 to quantify the probabilistic character of the assessment’s outcome; 

3. sensitivity analysis:  

 to determine the dominant and the non-dominant input parameters; 

4. metamodelling method:  

 to formulate a simple surrogate model, to replace the original model; 

5. economic optimisation:  

 financial criteria and optimisation schemes to attain the best solution; 

These five sets of probabilistic tools each form the topic of a Common Exercise in Subtask 2, all 

aiming at evaluating the capabilities and limitations of different available methods.  These five 

sets furthermore are the respective subject of this and the next chapters, which constitute the 

main report for Subtask 2. 

2.1.2 Qualitative exploration tools 

This chapter focuses on qualitative exploration, the first set from the mentioned suite of tools. 

The application of these qualitative exploration tools to a hygrothermal analysis or design case 

has a double objective: factor identification and flowchart formation.  The factor identification 

is to map out all relevant parameters that may affect the outcome of the analysis or design un-

der consideration, while the flowchart formation is to establish all relations between the para-

meters and outcomes which are part of the assessment.   

 

 

Figure 2.1: Fault tree for the electricity supply network and its primary components 
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Qualitative techniques for probabilistic assessment mainly stem from the risk assessment field, 

and therefore often take the narrower focus on hazard identification and hazard organisation.  

These two aspects of qualitative exploration have already been illustrated in Section 1.2.2, the 

results of which are brought back in Figure 2.1.  The hazard identification indicated the turbine, 

the main fuel, the backup fuel and the cable network as potential causes of failure.  The hazard 

organisation demonstrated the different causal relations between those factors, for example 

illustrated by the turbine failure resulting from the simultaneous depletion of main and backup 

fuel. 

Different hazard identification methods have sprouted from different engineering fields, but all 

are founded on similar concepts.  They aim at assessing which hazards may jeopardize the sys-

tem, which causes can lay at the origin of the hazards, and which impacts could result from the 

hazards.  Combining the probability of the cause with the criticality of the impact moreover al-

lows a qualitative ranking of the hazards.  Selected examples of hazard identification methods 

are: preliminary hazard analysis, failure modes and effects analysis, hazard and operability stu-

dies, risk screening sessions, ...  Further detail and background on these methods can be found 

in (Stewart and Melchers, 1997). 

Having identified the possible hazards, and their causes and impacts, logical trees may be used 

to represent and analyse the relations between hazards, causes and impacts.  The main aim of 

these hazard organisation methods is the mapping of all these relations, to allow further quali-

tative and/or quantitative examinations of the system.  Again, different fields have developed 

different methods, but again, they all share one prime feature, which is to logically connect dif-

ferent events in that hazard/cause/impact scheme.  Selected examples of hazard organisation 

methods are: event trees, fault trees, cause-consequence charts, bayesian probabilistic nets, … 

(Stewart and Melchers, 1997).  

The qualitative techniques for probabilistic assessment thus target: 1) the detection of all pos-

sible hazards, causes and impacts, and the parameters interacting in those, and 2) the synthesis 

of all relations between the hazards, causes, impacts and interacting parameters.  Such hazard 

identification and organisation is a crucial initial feature of any risk assessment, as none of the 

following stages can be completed – or even just make sense – without this first step.  Careful 

execution of this qualitative exploration is therefore essential, since the neglect of any hazard, 

cause, impact or relation directly affects the overall dependability of the analysis, and thus the 

reliability of the considered structure. 

Overall, the desired outcome of the qualitative exploration is a lucid and logical representation 

of the considered risk assessment, in support for consecutive qualitative or quantitative analy-

ses.  The example in Figure 2.1 illustrates such ‘lucid and logical representation’ and ‘support 

for consecutive analyses’: the logical relations between different hazards, causes and impacts 

are evident, and a consecutive assessment of the various risks is straightforward.  A similar ap-

proach and methodology is equally applicable though to more complex and multifaceted confi-

gurations, like oil pipelines (Yuhua and Datao, 2005), power systems (Volkanovski et al., 2009), 

nuclear reactors (Kumawat et al., 2013), among other cases. 
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2.1.3 ‘Gains and costs’ concept 

In many engineering disciplines, the reliability of a certain system is assessed via its probability 

of failure.  Consequent to that train of thought, risk assessment indeed focuses on the hazards, 

causes and impacts in relation to such failure.  In hygrothermal building performance engineer-

ing on the other hand, there often are no strict transitions from ‘functional’ to ‘non-functional’.  

Instead, thermal retrofits aim at positive effects on health, comfort, durability and sustainabili-

ty, while hygrothermal failures affect these aspects negatively.  When analysing and designing 

building performances, it is hence more appropriate to consider ‘gains and costs’ instead of ‘no 

failure or failure’.  These gains and costs are preferably expressed in financial terms, see Chap-

ter 6, but other indirect expressions can equally be employed. 

The extension from the narrower ‘hazards, causes, impacts’ idea to the wider ‘gains and costs’ 

concept is straightforward.  To reflect the more universal nature of the qualitative approaches 

with respect to hygrothermal building performances, we have opted for discarding the original 

risk-based terminology.  Instead, factor identification and flowchart formation are put forward, 

as they have a more universal character.  The applicability of currently available factor identifi-

cation and flowchart formation methods for building performance analysis and design is inves-

tigated in Section 2.2 below.  Our findings are based on the outcomes of Common Exercise 1, 

which examined thermal renovation solutions for walls.  It is observed that even simple cases 

involve a multitude of interacting factors, with complex and entwined relations between them.  

This renders the flowchart formation a daunting task, and direct further quantification far from 

easy. 
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2.2 Common Exercise 1 

2.2.1 Presentation of Exercise 

Common Exercise 1 has already been presented in Section 1.3.2, and all details can be found at 

that location.  The primary objective of Common Exercise 1 is to judge the applicability of exist-

ing techniques for factor identification and flowchart formation in a building performance con-

text.  To that aim, participants are requested to execute the factor identification and flowchart 

formation for the gains and costs related to the thermal retrofit of a brick cavity wall by means 

of cavity, interior or exterior insulation.  In essence, the outcome of this qualitative exploration 

should support the future quantification of these gains and costs, which should in turn allow a 

comparison of the relative performances of the three retrofit options, and ultimately a decisi-

on on which solution shows most potential.  To limit the complexity, gains are simplified to im-

provements in energy efficiency, costs are condensed to the extent of hygrothermal damages.   

The formal deliverables of the Exercise are: 

 an overview of all interacting parameters that may affect the set gains and costs; 

 a flowchart indicating the logical relations between parameters and gains and costs; 

 comments on the overall capabilities and limitations of the applied methods for factor 

identification and flowchart formation. 

2.2.2 Outcomes from Exercise 

Six solutions for ST2-CE1 were received.  The solutions of Carsten Rode (Technical University of 

Denmark), Kristina Mjörnell (SP Technical Research Institute of Sweden) and Christoph Har-

reither (Vienna University of Technology, Austria) focus primarily on factor identification, while 

the submissions of Simo Illomets (Talinn University of Technology, Estonia), Angela Kalagasidis 

(Chalmers, Sweden) and Liesje Van Gelder (KU Leuven, Belgium) concentrate mainly on flow-

chart formation.  The aim here is not to represent the complete solutions, but instead to make 

a synthesis of their findings and comments only. 

2.2.2.1 Factor identification 

2.2.2.1.1 Observations from participants 

A first important observation, made by many participants, is that even fairly simple analyses in-

volve a significant number of interacting parameters.  Carsten Rode limits his analysis to a fac-

tor identification in relation to potential moisture-related durability problems.  For the case of 

interior insulation only, he identifies more than 10 potential hazards, ranging from rain pene-

tration over beam end decay to differential movements.  When including the two alternatives, 

this inventory of hazards would expand even further. For each hazard, a diversity of interacting 

parameters is put forward, going from geometries and dimensions over material and compo-

nent properties to workmanship issues.  Similar extensive surveys of interacting factors are ob-

served in the solutions from all other participants. 
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Moreover, most of the risk-oriented factor identification methods classify the interacting para-

meters into a limited number of levels, typically along the lines of the actual hazards, their po-

tential causes and their possible consequences.  Liesje Van Gelder attempts such classification 

in relation to ‘deterioration of interior finishing’ as hazard, see Figure 2.2.  Potential causes are 

surface condensation and mould growth, where the latter in turn stems from the combination 

of mould spores in the air, low surface temperature and high surface vapour pressure.  The low 

surface temperature can be the effect of the low outside temperature, thermal bridging or low 

inside temperature; and so on.  This multitude of interacting parameters does therefore result 

in a multitude of levels in the factor identification and subsequent flowchart formation. 

 

Figure 2.2: Bayesian probalistic net for ‘deterioration of interior finishing’ (adapted from Figure 
2 in Liesje Van Gelder’s solution) 

 

2.2.2.1.2 Observations from subtask leaders 

Most of the solutions report the work of an individual researcher, or exceptionally the work of 

a small group of researchers.  Although many intentionally reduce the objective of their analy-

sis to limit the required efforts, there is sufficient overlap between different participants’ solu-

tions for a comparison.  This comparison points out that there is a large disparity between the 

solutions: each participant arrives at identifying factors that no other participant points at, im-

plying that each participant also lacks factors that are correctly identified by other participants.  

A correct factor identification necessitates much expertise and an open mind, which can most 

probably be more easily established by a larger group, rather than by an individual researcher.  

In other engineering branches, such factor identification is indeed commonly undertaken by a 

group of engineers (Faber, 2009). 
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In many solutions, participants stay close to the original risk-centred concept, thus focusing on 

potential hazards and their causes and impacts.  Liesje Van Gelder, in relation to mould growth 

owing to excessive interior vapour pressure, identifies ‘low ventilation’ as a potential cause and 

hence as interacting parameter, see Figure 2.2.  The insufficiency of ventilation is a rather rela-

tive concept though, since it depends on various other parameters, and hence cannot be easily 

judged.  Besides, when it comes to the energy consumption, such ‘low ventilation’ may actual-

ly prove beneficial.  The ‘hazard-cause-impact’ train of thought, typical for standard risk assess-

ments, consequently may bring about a judgmental bias, hampering the precision of the factor 

identification.  For the case in Figure 2.2, the ‘low ventilation’ should simply have been identi-

fied as ‘ventilation’, to be quantified for both the costs and the gains. 

2.2.2.2 Flowchart formation 

2.2.2.2.1 Observations from participants 

It is widely accepted that a breakdown of a system is often not the result of a failure of a single 

component, but rather stems from a sequence of negative events (Faber, 2009).  In ‘standard’ 

configurations, this sequence can however be broken down easily into single events, each with 

a probability of failure or non-failure.  With respect to the probabilistic assessment of building 

performances, on the other hand, the gains and costs are determined by a multitude of inter-

woven events, frequently of coupled, non-linear and time-dependent nature.  Angela Kalagasi-

dis exemplifies this with microbiological growth on the exterior rendering, see Figure 2.3, which 

depends on moisture content, temperature, daylight availability, ....  The latter interacting pa-

rameters cannot be reduced to distinct events with a certain failure probability, but have to be 

assessed as an interacting set of parameters. 

 

Figure 2.3: Event tree net for ‘microbiological growth on the facade’ (taken from Figure 12 in 
Angela Kalagasidis’ solution) 
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Moreover, the performance criteria for the gains and costs related to building performance as-

sessments can neither be straightforwardly reduced to a functional versus non-functional idea.  

Microbiological growth on the facade does typically not yield structural damage, but just leads 

to a maintenance cost for the building owner.  Reduced energy consumption is a similar exam-

ple of such gradual performance criteria.  Furthermore, as both gains and costs are of interest, 

some interacting parameters may have opposite meanings for different gain and cost aspects.  

For example, the ‘additional insulation of the wall’, see Figure 2.3, may indeed promote micro-

biological growth and consequently increase the costs, it will on the other hand equally add to 

the gains by reduced transmission losses.  This, together with the complex interaction between 

parameters, often leads to extensive, multi-facetted and interwoven flowcharts.  

2.2.2.2.2 Observations from subtask leaders 

The comments made for ‘factor identification’ remain valid here as well.  The solutions submit-

ted by the participants show a significant disparity with respect to the overall contents, specific 

details and overall applicability of their flowcharts. Again, the high amount of expertise needed 

favours collective approaches over individual efforts.  The hazard-cause-impact thinking equal-

ly affects the flowchart formation.  For example in the third layer of the right-hand-side branch 

in Figure 2.3, both ‘drying potential on outside’ and ‘moisture from outdoors condensates on 

the facade’ appear as separate processes.  These should be interpreted as concurrent causes 

for microbiological growth on the facade, in the combination of excessive surface condensa-

tion and moderate surface evaporation.  However, both can actually be substituted by ‘surface 

moisture content’ as the interacting parameter.  Similarly, most of the left-hand-side branch in 

Figure 2.3 can be condensed to that same ‘surface moisture content’ parameter.  The correct 

identification of the interacting parameters and the processes that determine them – surface 

moisture content is influenced by moisture exchanges with the interior and exterior environ-

ments – would strongly reduce the density and complexity of the resulting flowcharts. 

2.2.3 Discussion of outcomes 

The prime objective of Common Exercise 1 was to judge the applicability of existing techniques 

for factor identification and flowchart formation in a building performance context. In essence, 

the qualitative exploration should result in a lucid and logical representation of the considered 

assessment, in support of a consecutive assessment of expected gains and costs. 

Several reservations are put forward: 

 separate researchers or engineers may come to deviating results in the factor identifi-

cation and flowchart formation; such can be resolved by performing the qualitative ex-

ploration with a larger group of experts. 

 the factor identification and flowchart formation results quickly become very complex 

and involved, partially due to a too hazard-focused approach; this can be eased by use 

of correct concepts, rigorous procedures and appropriate software. 

These reservations are not new, and can be addressed as stated.  In various other engineering 

fields, qualitative exploration based on factor identification and flowchart formation is success-

fully applied to very large configurations, such as oil pipelines (Yuhua and Datao, 2005), power 

systems (Volkanovski et al., 2009), nuclear reactors (Kumawat et al., 2013), ... 
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Such large systems justify an allocation of significant resources for the probabilistic assessment 

in general and the qualitative exploration in particular.  Unfortunately, this is not the case for a 

‘simple’ thermal retrofit of a building, which is commonly designed by an engineer or architect 

and executed by a building contractor.  These limited resources form an important bottle-neck 

for the applicability of existing techniques for qualitative exploration in the context of building 

performance analysis and design. 

However, the core barriers for a copy-roll forward of existing techniques into the probabilistic 

assessment of building performances are the issue of gradual gains and costs – instead of strict 

failure probabilities –, and the complex and interwoven relations between gains, costs and in-

teracting parameters.  These lead to the observation that the resulting flowcharts no longer al-

low a direct further quantification, thus defying their primary purpose.  And without their sup-

port for quantification intents, their value for probabilistic assessment can be questioned. 
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2.3 Conclusions 

The core objective of Annex 55’s Subtask 2 is to evaluate the advantages and disadvantages of 

existing methods for probabilistic assessment when applied to building performance analysis 

and design.  Five sets of tools are needed for probabilistic assessments: qualitative exploration, 

uncertainty propagation, sensitivity analysis, metamodelling method, and economic optimisa-

tion.  This chapter focused on qualitative exploration, which has the double objective of factor 

identification and flowchart formation.  Factor identification is to map out all relevant parame-

ters for the case considered, while flowchart formation is to establish all relations between pa-

rameters for the case considered.  Qualitative exploration thus targets the identification of all 

parameters involved and their logic interrelations. 

Factor identification and flowchart formation tools were adopted from the field of risk assess-

ment, which however have a narrower focus on hazard identification and hazard organisation.  

Respective examples of these tools are preliminary hazard analysis, failure modes and effects 

analysis, risk screening sessions, … and event trees, cause-consequence charts, bayesian pro-

babilistic nets.  As most of these methods stem from the risk assessment field, they aim at eva-

luating the probability of failure, with a fairly strict limit between functional and non-functional.  

Such firm distinction is however not suitable for hygrothermal building performances, where a 

far more nuanced and gradual performance evaluation is required, which is accommodated by 

opting for the more general concept of gains and costs.  

The overall applicability and the inherent (dis)advantages of factor identification and flowchart 

formation methods was judged via a comparative analysis of wall post-insulation solutions in a 

Common Exercise.  Several reservations were distilled from the six submitted responses: 

 the factor identification and flowchart formation results quickly become very complex 

and involved;  

 separate researchers or engineers may come to differing results in the factor identifi-

cation and flowchart formation;  

 the concept of gains and costs, and their complex and interwoven relations with other 

parameters, complicate further quantitative evaluation. 

The first two can be countered respectively by adopting correct concepts, rigorous procedures 

and appropriate software, and by performing the qualitative exploration with a larger group of 

experts, as is state-of-the-art in many other risk assessment applications.  These typically con-

sider large systems though – like oil pipelines, power systems, nuclear reactors, ... –, where sig-

nificant resources are allocated for the probabilistic assessment in general and the qualitative 

exploration in particular.  The more limited resources typically available for thermal retrofits of 

buildings hence form an important bottle-neck for the applicability of existing techniques for 

qualitative exploration in the context of building performance analysis and design.  The last re-

servation is even more critical however.  Due to the gradual and complex nature of typical buil-

ding performance criteria, and their interwoven and multifaceted relation with interacting pa-

rameters, the resulting flowcharts do not allow easy further quantification, defying their pri-

mary aim.  And without this support for quantification, their value can be questioned. 
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3.1 Introduction 

3.1.1 Uncertainty quantification for decision making 

Where factor identification and flowchart formation (see Chapter 2) reveal the interacting 

factors determining the benefits and risk of hygrothermal retrofits, quantitative methods are 

necessary to steer the decision making. The aim of uncertainty quantification is to determine 

to what extent the outcome(s) will vary if some of the input parameters, be it material 

properties, boundary conditions, future scenarios,… are not exactly known. Due to complexity 

and computational cost, a quantitative probabilistic analysis is often performed on well 

defined (sub)problems and if relevant the results can be fed into a global flowchart. Well-

defined here means that all input parameters and requested output parameters are expected 

to be identified, even though the actual distribution of the input parameters might be lacking. 

A quantitative method then will predict the variation of the different outcomes based on the 

stochastic variation of the input parameters. In most building physics applications, the benefits 

and risk are determined by multiple sources of uncertainty, such as the building geometry and 

exact composition, the impact of workmanship, the physical properties of the components, the 

boundary and initial conditions, etc… Determining the relative impact of the multiple sources 

of uncertainty on the obtained response is then also a prerequisite to come to effective 

retrofit strategies. Uncertainty quantification in combination with sensitivity analysis (see 

Chapter 4) will help to identify and manage the priorities and to reduce sources of uncertainty.  

Though some examples of other methods for uncertainty quantification in building physics 

applications can be found in literature and have also been presented in free papers during the 

Annex-meetings – such as the first-order and second order reliability methods (FORM/SORM) 

– in the common exercises typically Monte Carlo methods have been used. The Monte Carlo 

method makes use of (optimised quasi-) random sampling, with the prediction of the outcome 

given by a numerical tool, similar as the one used for a deterministic prediction. These 

deterministic models can be quite elaborated (a lot of building physics applications are solved 

using finite element or finite volume discretisation) and as such might hamper a stochastic 

analysis due to computational costs. To overcome this, surrogate or so-called meta-models can 

be used, as will be elaborated upon in Chapter 5. 

The next section of this chapter will give a brief overview of different quantitative methods 

available in literature. The specific focus of this chapter is to decide on which are applicable for 

hygrothermal retrofitting problems. As was shown by the common exercises, due the time-

dependent and highly nonlinear behaviour of many retrofitting problems, Monte Carlo shows 

to be the most promising technique. Since the Monte Carlo method is a simulation based 

technique, an important aspect will be the calculation efficiency, which is largely determined 

by the sampling scheme. This will be discussed in Section 3.3. Addendum 2 presents CE2 of ST2 

which was an exploratory exercise on uncertainty quantification for analysing benefits and 

risks of a retrofitting measure. 
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3.2 Quantitative methods 

Uncertainty quantification for reliable energy efficient building retrofitting is a typical example 

of so-called forward uncertainty propagation. In forward uncertainty propagation we are 

interested in the quantification of the uncertainty of the outputs as a result of possible 

variance of the input parameters. This type of uncertainty quantification is especially used in 

reliability engineering, often to predict failure probabilities, but can as well be used to assess 

the probability distribution function of the outputs. With respect to energy retrofitting 

measures, the latter is e.g. of help to predict the (financial) benefits of a renovation measure, 

while the first could be used to assess related risks as mould growth, wood rot, structural 

damage,… 

Although several probabilistic approaches exist to evaluate uncertainty propagation, in build-

ing physics mainly examples of most probable point based methods (first and second order re-

liability methods) and simulation based methods or sampling methods (Monte Carlo simula-

tions) are found. 

3.2.1 FORM and SORM-methods  

First order and second order reliability methods are very common in structural reliability 

analysis. These methods compute the probability of an event (in structural reliability often 

failure) by means of idealisation of the limit state function. To do so, the probability density 

functions of all random variables are first approximated by equivalent normal distributions. 

Hence, the space of the random variables is transformed into a space of standard normal 

variables. In this transformed space of standard normal variables, the point of minimum 

distance between the origin and the limit state surface is searched and the failure probability is 

calculated corresponding to the (approximated) failure surface near this point. In the FORM 

method (First Order Reliability Method) the failure surface is approximated by a hyper plane 

tangent to the surface of failure. If this linear approximation is not sufficient, higher order 

approximations of the failure surfaces can be used. The Second Order Reliability Method for 

example approximates the failure surface by a quadratic surface at the design point. 

FORM- and SORM are analytical and approximate methods which turned out to be very 

efficient compared to simulation methods, as long as the number of variables is not too high. 

Furthermore, the random variables need to be continuous and also the failure surface must be 

a smooth and continuous surface. Compared to structural reliability analysis though, the pro-

babilistic assessment of energetic renovation measures of buildings is seldom determined by a 

failure criterion. Mostly an economic optimisation is the ambition and even if (moisture) da-

mage can occur, it is rarely handled as a strict failure criterion, but more often described as a 

possible additional repair cost.  As a result, although some applications of FORM and SORM in 

building physics can be found in literature (Pietrzyk and Hagentoft, 2008) and also have been 

presented at Annex-meetings, the methods showed to be not applicable for typical renovation 

design and building physics performance assessment as dealt with in the common exercises. 
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3.2.2 Monte-Carlo methods  

While FORM and SORM analyses are typically used to estimate the probability density function 

at specific points of interest (often the tail of the distribution function), Monte Carlo methods 

are mainly used to build the entire probability density function and to asses  global uncertainty 

and sensitivity. Monte Carlo methods consist of sampling input variables according to their 

probabilistic characteristics and feeding them into the calculation tool to predict the 

corresponding output parameters. In this way, a sample of responses is obtained. It is obvious 

that the quality of the outcome (the pdf of the output sample) is dependent on the number of 

simulations carried out and the sampling scheme used (the representation of the original 

distribution by the sampling). To assess whether the number of simulation runs is sufficient the 

convergence of some statistical values, as mean, variance,… of the output parameters can be 

investigated for different truncation levels. 

Main advantage of the Monte-Carlo method is that the method can be applied to all kind of 

problems using both static or dynamic simulation models and for all kind of probabilistic 

variables (be it continuous or discrete). Major drawback is that, to increase the quality of the 

output, the method often requires a large number of simulation runs, making it almost 

impossible to apply when model runs are expensive in computing or labour costs. To overcome 

this, recently a number of sampling techniques, such as: importance sampling, adaptive 

sampling, stratified sampling, latin hypercube sampling,…  have been developed that achieve 

the same level of accuracy in output performance while using fewer runs than the basic 

random sampling. As an alternative – and often in combination – also metamodelling is 

introduced in which the original time consuming model is replaced in the Monte-Carlo loops 

by a fast surrogate model. The surrogate or metamodel actually approximates the response 

surface by a simple mathematical model, such as linear regression planes, polynomials, neural 

networks,… hence avoiding the problem of long calculation times.  The next paragraph will go 

a bit more in depth on the more efficient sampling methods. Metamodelling will be dealt with 

in Chapter 5. 
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3.3 Advanced MC-methods 

The common exercises of Annex 55 showed that Monte Carlo simulations are often the only 

way to assess and quantify uncertainty and robustness of reliable energy efficient building 

retrofitting. As most studies are based on transient non-linear hygrothermal simulations, the 

need for cost efficient, optimised sampling schemes is clear. In this section, some of the most 

common sampling schemes for Monte Carlo simulations are described ranging from basic 

random sampling towards more optimised space filling designs. As the question ‘When is the 

size and quality of the sampling set sufficient?’ remains one of the key issues, evaluating 

sampling efficiency and sampling convergence will be discussed as well. 

3.3.1 Sampling techniques 

3.3.1.1 Basic random sampling 

Basic random sampling (BRS) is the simplest sampling technique to randomly assign values to 

the different input parameters. When applying basic random sampling, every new value of an 

input parameter is only determined by the statistical distribution of this parameter, not on 

values already selected. In addition, basic random sampling does not require determining in 

advance how many samples will be used. As such, basic random sampling is a simple technique 

(a random number generator and the input distribution suffice to make the design), but it is 

also computationally expensive as often many runs are needed to sample the parameter space 

in a representative way. Figure 3.1, taken from (Janssen, 2013), shows that a BRS-design is 

typically neither space filling nor provides non-collapsing sampling points. 

3.3.1.2 Latin Hypercube sampling 

Compared to basic random sampling, Latin Hypercube sampling (LHS) reduces the 

computational time by improving the non-collapsing property of the design. To do so, the 

distribution of each input variable is subdivided into n strata with equal probability. Each 

stratum is sampled randomly once. Hence, the input variables are chosen randomly, but no 

longer independently of each other. This means that in practice, one first has to decide on n, 

the number of sample points to generate in the design and then subdivides the input range of 

each variable into this number of subsets.  LHS-designs are still fairly easy to generate, but 

though they improve in general the space filling character of the design, the basic Latin 

Hypercube sampling mainly focusses on the fact that the design is non-collapsing. This, 

however, does not automatically guarantees an optimal distribution of sampling points in the 

parameter space, and in principle still poorly space filling designs are possible as illustrated in 

Figure 3.1 (top right). 

3.3.1.3 Space filling design 

To improve the space filling character of the design, several modification of the basic LHS-

method can be found in literature. Best known are the distance-based design methods, which 
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try to optimise the multidimensional distances between the different sampling points. This can 

e.g. be done by maximising the minimal distance between sampling points (the so-called 

maximin criterion) or by minimising the maximal distance between the sampling points (the 

minimax criterion). As an alternative also (nearly) uniform designs can be used. These designs 

try for a set of sampling points to minimise the global deviation from a perfectly uniform 

sampling design. Compared to basic random sampling and basic Latin Hypercube sampling, 

space filling designs result in much more optimal designs as can be seen in Figure 3.1 (bottom), 

but generating the designs is a challenging task, with a complexity increasing with the size of 

the design space. 

 

Figure 3.1: Sampling designs for basic random sampling (top left), Latin Hypercube sampling 
(top right) and distance based (bottom left) and uniform (bottom right) space filling designs. 

Figure taken from (Janssen, 2013).  

 

Note that Latin Hypercube sampling in general and most space filling designs subdivide the 

input space a priori and that the number of Monte Carlo runs is determined by this 

subdivision. Whereas with a traditional sequential sampling, as in basic random sampling, 

Monte Carlo loops are run in a sequence, one at a time and each new sampling point can be 

added based on the information already obtained in the previous runs. As sequential sampling 

has some advantages (e.g. combined with a convergence criterion), it can be interesting to run 

the Latin Hypercube sampling in batches corresponding to (a multiple of) the number of strata 

in the Latin Hypercube design space to allow sequential sampling. 
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3.3.2 Sampling efficiency and sampling convergence 

As investigating the reliability of building retrofitting measures is often based on time 

consuming simulations, the above mentioned advanced sampling techniques are all introduced 

to reduce the number of runs needed to bring the variance on the outcomes below an 

acceptable value.  This is referred to as increasing the sampling efficiency. At the same, it is 

clear that flexible sampling methods that can easily be stopped or prolonged based on a 

convergence criterion can also significantly reduce the necessary calculation time. This 

requires though, a reliable assessment of the sampling convergence during the calculations. 

One of the misconceptions present amongst the Annex-participants at the start of the project 

was the idea that the number of runs in a Monte Carlo simulation is dependent on the number 

of input parameters. Investigating sampling convergence in the Common Exercises showed 

that the needed number of runs can be output dependent (e.g. mould growth versus heat loss) 

but is not dependent on the number of input variables. As such, a problem with one input 

variable might need as many runs as a problem with more than twenty input variables. An 

interesting study on this topic, comparing the sampling efficiency and sampling convergence of 

different sampling techniques for building physics applications has been presented at one of 

the Annex-meetings and is more extensively documented in (Janssen, 2013). The study uses 

the fourth benchmark exercise from the HAMSTAD-project (Hagentoft et al, 2004) as an 

exemplary building physics application. This benchmark case evaluates the hygrothermal 

response of a massive brick wall with interior finishing. The uncertainty on cumulative heat 

losses and moisture gains is evaluated with the hygrothermal properties of the brick wall and 

the surface coefficients as input variables. Sampling efficiency and sampling convergence are 

studied for four different sampling strategies: basic random sampling, basic Latin Hypercube 

sampling and two space filling designs, the maximin and a uniformity-based design. 

Sampling efficiency is evaluated for all four sampling strategies by comparing the predicted 

mean value µ and standard deviation σ of the heat losses and moisture gains to a reference 

solution. Figure 3.2 shows the results for the cumulative heat losses. It is clear that Latin 

Hypercube sampling substantially reduces the deviation from the reference solutions in 

comparison to the results of the basic random sampling. Combining LHS with a space filling 

design furthermore significantly enhances the sampling efficiency. Relative to basic random 

sampling, on average 10 times less runs are needed with the LHS-design to achieve the same 

accuracy of mean value and standard deviation. The maximin design and the uniformity-based 

design further improve the sampling efficiency with a factor 7 and 10, respectively. Note that 

the results presented in Figure 3.2 also falsify the idea that the accuracy does not improve 

much above 100 runs, as often put forward in literature. For all sampling strategies a 

continued decrease of the relative deviations from the reference solution is found with 

increasing number of runs. 

The study furthermore presents a kind of bootstrapping approach based on replicated Latin 

Hypercube designs to run LHS in sequential mode, introducing the possibility to halt the 

simulations when sufficient accuracy has been attained. As convergence criterion the internal 

standard deviations on the resulting mean value µ and standard deviation σ of the different 

subgroups is used. It is shown that this is a reliable estimate for the root-mean-square 
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deviations from the reference solution. More details on the method can be found in (Janssen, 

2013).  

 

 

Figure 3.2: Predicted mean value and standard deviation for basic random sampling (top), latin 
hypercube sampling (middle) and space filling designs (bottom). The black lines correspond to 

the reference solution.  Figures taken from (Janssen, 2013).  
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3.4 Common Exercise 2 

3.4.1 Presentation of Exercise 

Complementary to the first common exercise in ST2, which aimed at an exploration of 

qualitative probabilistic tools (see Addendum 1), CE2 investigated quantitative probabilistic 

tools applicable on a smaller scale. The subject of CE2 was the probabilistic prediction of 

energy savings and hygrothermal risk for a specific retrofitting measure at the building 

component level: the application of interior insulation on an existing massive wall. The CE is 

described in more detail in Section 1.3 and in Addendum 2. 

The formal deliverables of the exercise are: 

 the predicted evolution of the heat losses through the wall during the month of 

January, both for the deterministic case (determined by the mean input values) as well 

as for the different stochastic runs; 

 the evolution of the mould growth index as a function of time over the year, again 

both for the deterministic case as well as for the different stochastic runs. 

3.4.2 Outcomes from Exercise 

Nine solutions for ST2-CE2 were received.  The solutions of Anker Nielsen (Danish Building Re-

search Institute, Denmark) and Florian Antretter (Fraunhofer, Germany) were more a 

sensitivity analysis than an uncertainty quantification. Pär Johansson (Chalmers, Sweden), 

Fitsum Tariku (British Columbia Institute of Technology, Canada) and Paul Wegerer (Vienna 

University of Technology, Austria) performed a parametric study to assess the impact of the 

uncertainty of the input parameters on the outcome. The other four results by Carl-Eric 

Hagentoft (Chalmers, Sweden), Hans Janssen (DTU, Denmark), Liesje Van Gelder (KU Leuven, 

Belgium) and Jianhua Zhao (TUDresden, Germany) performed Monte Carlo simulations to 

quantify the uncertainty. In the latter case, both basic random sampling, Latin Hypercube 

sampling and space filling designs have been applied.  

Although the aim of the common exercise was an exploration of different quantitative 

probabilistic tools, it is difficult to compare the results as the deterministic case showed 

already significant deviations between the different solutions. Furthermore, several 

participants limited the stochastic analysis to a first parametric study, making it unable to 

assess and compare the predicted mean value and standard deviation.  Therefore, it was 

decided to use a fixed simulation tool (the Matlab-model for the Swedish attic case) in the next 

common exercises. In these common exercises, several participants further examined 

uncertainty quantification and Monte Carlo sampling efficiency. 
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4.1 Introduction 

4.1.1 Sensitivity analysis tools 

This chapter discusses sensitivity analysis, the third set from the mentioned suite of tools.  The 

application of these sensitivity analysis tools aims at distinguishing the dominant from the non-

dominant input parameters, wherein (non-)dominance relates to the respective impact on the 

resulting outcomes of the probabilistic assessment.  This distinction is crucial in many respects: 

such dominant parameters can be applied as design parameters, they should be accounted for 

in a surrogate model and they should be properly characterised with regard to their variability.   

Sensitivity analysis is the evaluation of how the uncertainty in the output of a model or system 

can be attributed to different sources of uncertainty in its inputs (Saltelli et al., 2008).  Sensiti-

vity analysis can therefore be useful for many aims, such as (Wikipedia, 2014a): 

 model simplification: fixing inputs that have no effect on the output, or identifying and 

removing redundant parts of the model or system structure; 

 error identification: searching for errors in the model or system by tracing unexpected 

relationships between inputs and outputs; 

 robustness evaluation: testing the robustness of the outcomes of a model or system in 

the presence of uncertainty; 

 uncertainty reduction: identifying model inputs that cause significant variability of the 

output and should therefore be further evaluated if the robustness is to be increased; 

 optimisation or filtering: finding regions in the space of input factors for which the mo-

del or system output meets some optimality criterion; 

Given its wide range of uses, the literature provides numerous techniques for sensitivity analy-

sis: examples can be found in (Saltelli et al., 2008; Wikipedia, 2014; Hamby, 1994; Hamby, 1995; 

Helton and Davis, 2002; Lomas and Eppel, 1992) among others.  With respect to the objectives 

of Subtask 2 of Annex 55, this chapter judges the capabilities and limitations of (a selection of) 

these sensitivity analysis approaches, via their application for the hygrothermal behaviour of a 

cold attic in Common Exercise 3.  Initially, in Section 4.2, the applied methods are presented, 

secondly, in Section 4.3, their merits and flaws are discussed, and finally, in Section 4.4, conclu-

sions are formulated.  
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4.2 Presentation of methods 

4.2.1 Introduction 

A vast array of sensitivity analysis methods is available in the literature; see for example (Sal-

telli et al., 2008; Wikipedia, 2014; Hamby, 1994; Hamby, 1995; Helton and Davis, 2002; Lomas 

and Eppel, 1992), among many others.  In this section, only the methods applied in relation to 

Common Exercise 3 are presented, and this selection is therefore by no means complete.  The 

selected methods can be categorised into five distinct classes: one-at-a-time, screening, corre-

lation-based, segmentation-based and variance-based methods.      

4.2.2 One-at-a-time methods 

The simplest approach to sensitivity analysis is to alter one input parameter at a time – while 

maintaining the other factors at their nominal values – and observe the impact of such change 

on the resulting outcome.  The impact may then be expressed with different indicators: 

 basic:    x x x
i i,max i,min

S Y Y       (4.1) 

 sensitivity index:  x x x x
i i,max i,min i,max

S Y Y Y      (4.2) 

 elasticity index:     x x x i,max i,avg
i i,max i,avg

S Y Y x x      (4.3) 

with xi the considered input parameter, xi,max/min/avg referring to its largest, smallest and average 

value considered, Sxi the sensitivity of the output to input parameter xi, Yxi,max/min/avg the output 

value for the different values of input parameter xi.  In these, the largest and smallest values 

applied for xi are typically located around the 1- and 99-percentile, for both uniformly and nor-

mally distributed parameters.  Commonly reported advantages of these one-at-a-time techni-

ques are their simplicity and efficiency. 

A typically mentioned shortcoming is however that they only sample a limited part of the input 

space, by using a limited number of input parameter levels while also maintaining all other pa-

rameters at their nominal values.  The former restriction can be addressed by selecting several 

equiprobable values for the input parameter, and computing the sensitivity based on the ave-

rage variation of the resulting outcome.  Two possible – and strongly related – indicators are: 

 mean square impact:  
k 2

x x x
i i,j i,avg

j 1

S Y Y


      (4.4) 

 standard deviation:  x x
i i,j

S std Y       (4.5) 

with xi,j the k selected equiprobable values for the input parameter and std the standard devia-

tion.  This extension of course significantly inflates the computational cost, while the sampling 

of the input space still remains relatively restricted. 
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4.2.3 Screening methods 

To address that limited sampling of the entire input space, screening methods can be applied, 

wherein the one-at-a-time changes are abandoned in favour of more advanced sampling sche-

mes.  Typical examples are the fractional factorial design and the elementary effects method.  

In the former, two levels are defined for each input parameter, normally xi,max and xi,min.  A frac-

tional factorial design with k runs for the considered parameters with two levels each is then 

taken as the sampling design, and the sensitivity is expressed as: 

   x x x
i i,max i,min

S avg Y avg Y 2        (4.6) 

hence indicating the distance between the average output values for respectively the high and 

the low levels of each considered input parameter.  An example of a fractional factorial design 

for a problem with 15 input parameters is shown in Figure 4.1.  

The elementary effects method instead makes use of a (limited) number of levels for the input 

parameters. Starting from an initial random combination of input parameter values, only one 

parameter is modified from one simulation to the next, and a total of k runs is performed.  The 

sensitivity is then expressed as: 

 x x
i i

S avg d      with      
i ix x x

i
d Y Y


        (4.7) 

In this expression, dxi hence indicates the normalised output difference between two consecu-

tive simulations wherein xi is the parameter that changes its value with a step Δ.  Figure 4.2 de-

picts a characteristic elementary effects sampling design for a 5-parameter-problem.  More in-

fo on the elementary effects method can be found in (Morris, 1991; Campolongo et al., 2007). 

 

Figure 4.1: exemplary fractional factorial design for a 15-parameter problem with two levels 

 

Figure 4.2: exemplary elementary effects method trajectory for a 5-parameter problem 
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4.2.4 Correlation-based methods 

Where the methods above make use of (fairly) simple sampling designs, from here on Monte 

Carlo sampling designs are applied, be it random, latin hypercube or optimised latin hypercu-

bes (see Chapter 3).  The data available to the sensitivity analysis methods thus becomes more 

exhaustive, specifically k samples from the distributions of the input parameters and k corres-

ponding values of the resulting outcomes.  These give a (much) more representative sampling 

of the input and output space, and should therefore allow for a better evaluation of the (non)-

dominance of parameters.  The sensitivity indicators introduced above can however no longer 

be applied.  Instead, based on the k values of the input parameters and corresponding output, 

sensitivity can equally be investigated via correlations between output and input.  Typical tech-

niques in this respect are Pearson’s product-moment correlation and Spearman’s rank correla-

tion and linear regression. 

The Pearson coefficient is a measure of the linear correlation between two variables, giving va-

lues from +1 (full positive correlation) over 0 (no correlation) to −1 (full negative correlation): 

           
k k

2 2

x i,j i j i,j i j
i

j 1 j 1

S x avg x Y avg Y x avg x Y avg Y
 

 
     
 
  (4.8) 

The Pearson coefficient implicitly assumes linear relationships between input and output.  This 

constraint is avoided by used of the Spearman coefficient, for which the values of xi,j and Yj are 

replaced with their ranks in their specific populations.  The Spearman coefficient however still 

implicitly requires monotonous relations between input and output. 

Alternatively, the correlation between input and output can be assessed via the linear regressi-

on coefficients.  Fitting a linear relation between input parameters and resulting outcome: 

0 1 1 k kY x ... x              (4.9) 

with αj the regression coefficients, allows derivation of the sensitivity indicators as the standar-

dised regression coefficients: 

   x i i
i

S std x std Y          (4.10) 

wherein standardisation is implemented to avoid wrongly estimated sensitivities for input pa-

rameters with low average and/or standard deviation.  For an optimal result, iterative pruning 

is recommended, during which irrelevant parameters are iteratively eliminated from the linear 

regression model until only significant parameters remain.  An extension to standard linear re-

gression is rank regression, which has however not been applied in the framework of the ana-

lysis here.  Analogous to the Pearson and Spearman coefficients, constraints related to mono-

tonicity and/or linearity are equally valid here. 

4.2.5 Segmentation-based methods 

To circumvent these constraints of monotonicity and/or linearity of the correlation and/or re-

gression coefficients, more advanced methods are needed.  Typically, these are based on seg-

mentation or variance.  First, the segmentation-based techniques are discussed. 
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Segmentation-based sensitivity analysis techniques split the set of k inputs or outputs into dif-

ferent segments and evaluate whether the corresponding output or input segments stem from 

the same population: the larger the degree of dissimilarity between the distributions for each 

of the segments, the larger the sensitivity.  Two tests are typically applied in this respect: Kol-

mogorov-Smirnov (KS) and Kruskal-Wallis (KW).   

For KS the set of k outputs is divided into two segments with respectively the values below and 

above the output’s median.  The two parallel segments of the input parameter are then judged 

on whether they have a similar distribution, with the sensitivity expressed as: 

   x i,Y i,Y
i top bottom

S max cdf x cdf x
 

  
 

     (4.11) 

with cdf the cumulative probability density distribution, Ytop/bottom the segments of respectively 

the over- and below-median output values, and xi,Ytop/bottom the corresponding input parameter 

values.  For more information, see (Hamby, 1994). 

For KW, each set of k values for the considered input parameter is split into a (limited) number 

of equiprobable segments, and their corresponding output values are categorised analogously.  

The probability that the different sets of output values stem from different populations is then 

a measure for the sensitivity:  

 x x x
i i,1..k/m i,k/m..2k/m

S 1 p Y ,Y ,... from same population     (4.12) 

with m the number of segments, Yxi,1..k/m the set of output values in segment 1, Yxi,k/m..2k/m the set 

of output values related to segment 2, …  

Finally, scatterplots can equally be considered a segmentation-based method, however evalua-

ted qualitatively rather than quantitatively.  This approach applies plots of the k output values 

in function of the k values for the input parameter, to visually judge the (dis)similarity between 

the output populations for different segments of the input parameters.  Scatterplots could also 

be considered a correlation-based method, wherein the sensitivity is deemed higher when a 

more well-defined visual relation between input and output is obtained. 

4.2.6 Variance-based methods 

The methods introduced above all yield a single sensitivity indicator for each input parameter, 

hence representing the total effect of the variability of the input parameter on the variation of 

the resulting outcomes.  When decomposition into direct and interactive influences is desired, 

variance-based methods provide a possible approach. 

Variance-based sensitivity analysis aims at decomposing the variance of the output of the mo-

del or system into fractions which can be attributed to separate and/or combined inputs.  For 

example, given a model with two inputs and one output, one might find that 70% of the out-

put variance is caused by the variance in the first input, 20% by the variance in the second, and 

10% due to Interactions between the two (Wikipedia, 2014b).  These percentages can be inter-

preted as measures of sensitivity.  Variance-based sensitivity analysis is moreover attractive as 

it judges sensitivity across the whole input space and can easily deal with nonlinear responses. 
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Basically hence, a decomposition of the variance of the output is the target: 

  
d d

i ij 12 d

i 1 i j

var Y V V V
 

           (4.13) 

from which sensitivity indicators can be deduced as first order effects (the primary impact of 

the parameter itself): 

 x i
i

S V var Y         (4.14) 

or total order effects (including all interactions with other parameters): 

 
d

x i ij 12 d
i

j 1

S V V V var Y


 
    
 

      (4.15) 

with var the variance and V the partial variances. 

In a linear systems, the coefficients of determination r² between the output and the different 

inputs provide such variance decomposition. For more general systems, several other methods 

are available (Saltelli et al., 2008), amongst which the Fourier amplitude sensitivity test (FAST) 

method (Saltelli et al., 1999).  Unfortunately, this report does not lend itself to a detailed pre-

sentation, as this would lead us too far.  The general principles, and their implementation in 

FAST, can be found in the literature. 
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4.3 Evaluation of methods 

4.3.1 Methodology of evaluation 
The capabilities and limitations of the different sensitivity analysis methods introduced above 

are appraised via application for a hygrothermal performance analysis.  Firstly the calculation 

object is introduced, subsequently the processing of the results is discussed.    

4.3.1.1 Calculation object 

The evaluation of the sensitivity analysis techniques is executed via Common Exercise 3.  This 

Common Exercise centres on the hygrothermal performance of a cold attic.  A matlab model is 

provided, wherein the relevant heat, air and moisture balances to determine the hygrothermal 

conditions in the cold attic are solved.  More information can be found in the instruction docu-

ment in Section 1.7.  Simulations typically cover one year and result in hourly values for the hy-

grothermal conditions in the attic and the hygrothermal flows to and from the attic.  These are 

transformed to two particular outputs: the cumulated heat loss (CHL) in January, and the peak 

mould growth (PMG) over the year.   

The hygrothermal performances of the cold attic depend on 15 stochastic input parameters, 

which are brought together in Table 4.1 with their probability distributions.  Two different dis-

tribution types are applied: U(niform)(lower limit, upper limit) and N(ormal)(average, standard 

deviation) distributions.  The aim of CE3 is hence to determine the (non-)dominance of these 

15 input parameters with respect to CHL and PMG, once for a case wherein the climate year is 

fixed, once for a case where the climate year is variable. 

 

Table 4.1: variable input parameters, probability distribution 

Area of ceiling and roof (m2) U(50,200) 

Length of building (eave side) (m) U(7,20) 

Height of building (m) U(4,8) 

Leakage area per m2 of ceiling (m2/m2) U(0.001,0.05)** 

Venting area per meter eave (m2/m) U(0.001,0.05) 

Indoor temperature (°C) N(20,1.5) 

Indoor moisture supply (kg/m3) N(0.005,0.002) 

Year of climate data used (-) U(1,30)* 

Orientation of one of eave sides (-) U(0,180) 

U-value of the ceiling (W/m2K) U(1,5)** 

Resistance of roof insulation (m2K/W) U(0,1) 

Thickness of wooden underlay (m) U(0.010,0.020) 

Thermal conductivity of wood (W/mK) N(0.13,0.02) 

Vapour diffusivity of wood (m2/s) N(10-6,2 10-7) 

Initial relative humidity of wood (-) U(0.5,0.9) 

        *only discrete integers  **excessively high values 
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4.3.1.2 Evaluation method 

Application of each of the sensitivity analysis techniques put forward above results in sensitivi-

ty indicators for 14 input parameters.  The sensitivity to the climate year is not assessed, since 

it cannot be reliably quantitatively characterised.  For the CHL in the fixed-climate-scenario for 

example, the resulting Spearman coefficients are depicted in Figure 4.3.  In a next step, these 

results are transformed, first by taking absolute values of the sensitivity indicators and second 

by dividing all sensitivity indicators by the largest sensitivity indicator, see Figure 4.4.   

 

Figure 4.3: Spearman correlation coefficients for the cold attic case with fixed climate year 

 

Figure 4.4: Normalised Spearman coefficients for the cold attic case with fixed climate 
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Figure 4.5: Ordered normalised Spearman coefficients for the cold attic case with fixed climate 

 

Ultimately these positive and relative sensitivity indicators are ordered along the large to small 

order resulting from the Spearman coefficients, see Figure 4.5, wherein the Spearman results 

are hence accepted as the reference outcomes.  The entire transformation and ordering allows 

easy comparison of the different methods, as they all originally produce sensitivity indicators of 

different sign and magnitude.  The only method excluded from this analysis is ‘scatterplots’, as 

these do not lead to quantified sensitivity indicators.  The scatterplots will however be judged 

complementarily. 

4.3.2 Presentation of evaluation 

In the end, the collection of sensitivity analysis methods presented above can be boiled down 

to these twelve distinct methods and/or indicators: 

 differential sensitivity analysis, 2 points, indicator basic (eq. 4.1) 

 differential sensitivity analysis, 2 points, indicator sensitivity index (eq. 4.2) 

 differential sensitivity analysis, 2 points, indicator elasticity index (eq. 4.3) 

 differential sensitivity analysis, 30 points, indicator standard deviation (eq. 4.5) 

 fractional factorial design, indicator average impact (eq. 4.6) 

 elementary effects method (EEM), indicator average impact (eq. 4.7) 

 linear regression, indicator standardised regression coefficients (eq. 4.10) 

 Pearson’s coefficient, indicator moment correlation coefficient (eq. 4.8) 

 Spearman’s coefficient, indicator rank correlation coefficient (eq. 4.8 with ranks) 

 Kolmogorov-Smirnov, indicator maximal distance (eq. 4.11) 

 Kruskal-Wallis, indicator different-population-probability (eq. 4.12) 

 Fourier amplitude sensitivity test (FAST), indicator total effect (eq. 4.15) 
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The comparison of their outcomes is founded on the solutions for Common Exercise 3, nine of 

which were received, as contributed by Mika Saloonvara (Owens Corning, USA), Marcus Fink & 

Florian Antretter (Fraunhofer, Germany), Payel Das & Benjamin Jones (University College Lon-

don), Liesje Van Gelder (KU Leuven, Belgium), Fitsum Tariku (British Columbia Institute of Tech-

nology, Canada), Mike van der Heijden (TU Eindhoven, the Netherlands), Vahid Nik (Chalmers, 

Sweden), Pär Johansson (Chalmers, Sweden), and Henrik Karlsson (SP, Sweden).  The complete 

solutions are not included here, instead we will make a synthesis of their findings and com-

ments only.  Where appropriate, all solutions made use of Monte Carlo sampling to obtain sets 

of input parameters and related outputs, for which different contributors used different sam-

pling designs.  In a preliminary analysis however, the equivalency of their uncertainty and sen-

sitivity results has been verified and all sensitivity indicators should be sufficiently reliable for 

further analysis here. 

4.3.2.1 Fixed-climate case 

For the fixed-climate case, ten out of the twelve methods mentioned previously are employed, 

only the elementary effects method and the Fourier amplitude sensitivity test are not included.  

The collected relative sensitivities resulting from these 10 methods are presented in Figure 4.6 

for CHL and Figure 4.7 for PMG. 

It is clear that most of the methods produce consistent results, but it is similarly evident that a 

few methods come to deviating outcomes, with specifically over- and underestimations of the 

actual sensitivities.  For example, the ‘DSA, 2 pts, basic’ method gives a high sensitivity to non-

dominant parameters, while the ‘DSA, 2 pts, elastic.’ method yields a low sensitivity for domi-

nant parameters.   

 

Figure 4.6: Relative sensitivities for CHL (the significant parameters 1 to 4 are U-value of ceiling, 
resistance of roof, effective leakage area, indoor temperature). 
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Figure 4.7: Relative sensitivities for PMG (the significant parameters 1 to 3 are indoor moisture 
supply, indoor temperature and resistance of roof). 

The ‘DSA, 30 pts, std.’, ‘fract. fact. design’, ‘stand. lin. regress.’, ‘Pearson’s correl.’ and ‘Spear-

man’s correl.’ identify the U-value of the ceiling, the resistance of the roof, the effective lea-

kage area, the indoor temperature and the indoor moisture supply, the indoor temperature, 

the resistance of the roof as the dominant variables for respectively CHL and PMG.  These are, 

based on the physics, the plausibly significant input parameters, and the five mentioned sensi-

tivity analysis methods can thus be considered as reliable.  The other five methods, on the con-

trary, need to be deemed undependable.  This is a common conclusion for the DSA methods 

based on two points, but somewhat surprising for the segmentation-based methods Kolmogo-

rov-Smirnov and Kruskal-Wallis.  No effort has however been undertaken to explain those ob-

servations for the latter two methods. 

The CHL scatterplots in Figure 4.8 also identify U-value of the ceiling, the resistance of the roof, 

the effective leakage area and the indoor temperature as dominant variables, while the other 

scatterplots (not shown) indicate the insignificance of the other input parameters.  It should be 

noted though that the identification of effective leakage area and indoor temperature – secon-

darily dominant input parameters – remains ambiguous. 

Based on Figures 4.6 to 4.8, the reliable methods can be reduced to: 

 differential sensitivity analysis, 30 points, indicator standard deviation (eq. 4.5) 

 fractional factorial design, indicator average impact (eq. 4.6) 

 linear regression, indicator standardised regression coefficients (eq. 4.10) 

 Pearson’s coefficient, indicator moment correlation coefficient (eq. 4.8) 

 Spearman’s coefficient, indicator rank correlation coefficient (eq. 4.8 with ranks) 

 scatterplots 

bearing in mind that EEM and FAST have not been assessed yet. 
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Figure 4.8: Scatterplots of CHL in function of U-value of ceiling (top left), resistance of roof (top 
right), effective leakage area (bottom left) and indoor temperature (bottom right). 

4.3.2.2 Variable-climate case 

For the variable-climate case, only the six methods deemed reliable above are further evalua-

ted, complemented by the elementary effects method and the Fourier amplitude sensitivity 

test, the results of which can be found in Figure 4.9 and Figure 4.10. The ‘DSA, 30 pts., std.’ ob-

viously falls through.  In order to calculate the sensitivities under variable climates, the method 

can only be applied by randomly varying the climate year while doing the one-at-a-time varia-

tions of the other parameters, and naturally, this invalidates the method.  Also the ‘fract. fact. 

design’ is cracking up, given its underestimation of the second significant parameter for PMG.  

Moreover, as the sampling design only applies a lower and upper limit, the complete variability 

of the climate can fundamentally not be accounted for.  All other techniques appear to remain 

reliable, although some question marks surround the FAST results. Further analysis does reveal 

though that the relatively high sensitivities for the relatively non-dominant parameters are pri-

marily a consequence of incorporating the interaction effects.  If solely the main order is used, 

the agreement with the other methods improves vastly.  This however nullifies the primary ad-

vantage of the FAST approach, as it now does not result in any valuable additional information 

while requiring far more runs than all other methods.  One can moreover wonder where infor-

mation on such interactions actually finds relevant applications. 
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As before, the scatterplots (not shown here) allow identification of the main dominant input 

parameters, but remain more ambiguous when it comes to secondarily dominant parameters. 

 

 

Figure 4.9: Relative sensitivities for CHL (the significant parameters 1 to 4 are U-value of ceiling, 
resistance of roof, effective leakage area, indoor temperature). 

 

Figure 4.10: Relative sensitivities for PMG (the significant parameters 1 to 3 are indoor 
moisture supply, indoor temperature and resistance of roof). 
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Based on Figures 4.9 and 4.10, the reliable methods can be reduced to: 

 linear regression, indicator standardised regression coefficients (eq. 4.10) 

 Pearson’s coefficient, indicator moment correlation coefficient (eq. 4.8) 

 Spearman’s coefficient, indicator rank correlation coefficient (eq. 4.8 with ranks) 

 elementary effects method (EEM), indicator average impact (eq. 4.7) 

 Fourier amplitude sensitivity test (FAST), indicator first order (eq. 4.14) 

 scatterplots 

4.3.2.3 Influence of sample size 

As a final element in this evaluation, the impact of the sample size is investigated for a selected 

number of methods, specifically the Pearson’s coefficient, the elementary effects method, the 

Fourier amplitude sensitivity test and the scatterplots.  One illustration is shown in Figure 4.11, 

which depicts the variation of the Pearson’s coefficients for CHL with the number of samples in 

the supporting Monte Carlo analysis.  It is obvious that significant evolutions take place when 

increasing the number of runs.  The same observation is made for the other methods, and care 

should thus be taken with the number of samples applied to quantify the sensitivity indicators.  

For that reason hence, statistical validation of the resulting sensitivity indicators is essential, to 

confirm the dependability of the obtained (non-)dominant input parameters.  That specific as-

pect has not been elaborated further in Annex 55, but more information is available in the lite-

rature (see e.g. Van Gelder et al., 2014). 

 

 

Figure 4.11: Variation of the CHL Pearson’s coefficients with the sample size. 
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4.3.3 Conclusion of evaluation 

Our assessment, based on the specific example of the hygrothermal performances of a cold at-

tic, has revealed that only six of the original twelve methods can be considered reliable: 

 linear regression, indicator standardised regression coefficients (eq. 4.10) 

 Pearson’s coefficient, indicator moment correlation coefficient (eq. 4.8) 

 Spearman’s coefficient, indicator rank correlation coefficient (eq. 4.8 with ranks) 

 elementary effects method (EEM), indicator average impact (eq. 4.7) 

 Fourier amplitude sensitivity test (FAST), indicator first order (eq. 4.14) 

 scatterplots 

Each of these comes with disadvantages though: 

 linear (rank) regression coefficients 

o linear regression coefficients presume linear relations between input and 

output 

o linear rank regression coefficients presume monotonous relations between 

input and output 

 Pearson’s & Spearman coefficients 

o Pearson’s coefficients presume linear relations between input and output 

o Spearman’s coefficients presume monotonous relations between input and 

output 

 elementary effects method 

o the actual distribution of the input parameter is not taken into account 

o relative to other methods, far more runs are needed to come to stable results 

 Fourier amplitude sensitivity test 

o the reliability of the sensitivities can be weak for discrete input variables 

o relative to other methods, far more runs are needed to come to stable results 

 scatterplots 

o interpretation of scatterplots is subjective and at times ambiguous 

o no quantified sensitivity indicators are available, rating is hence difficult 
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4.4 Conclusions 

The core objective of Annex 55’s Subtask 2 is to evaluate the advantages and disadvantages of 

existing methods for probabilistic assessment when applied to building performance analysis 

and design.  Five sets of tools are needed for probabilistic assessments: qualitative exploration, 

uncertainty propagation, sensitivity analysis, metamodelling method, and economic optimisa-

tion.  This chapter focused on techniques for sensitivity analysis, which target the identification 

of the dominant and non-dominant input parameters, wherein (non-)dominance relates to the 

respective influence on the resulting outcomes of the probabilistic assessment.  This identifica-

tion is crucial in many respects: such dominant parameters can be applied as design parame-

ters, they should be accounted for in a surrogate model and they should be properly characte-

rised with regard to their variability. 

The literature on sensitivity analysis provides a vast array of different approaches, which can 

be classified into one-at-a-time, screening, correlation-based, segmentation-based and varian-

ce-based methods.  Twelve methods have been evaluated in this chapter, wherein at least one 

example from each category.  While the list of potential sensitivity analysis methods is far lar-

ger, the selected techniques give a fine overview of the different approaches.  The assessment 

of their respective capabilities and limitations has been based on application to a hygrothermal 

performance assessment of a cold attic in the framework of Common Exercise 3.  The target of 

this Common Exercise was to identify which of the fifteen stochastic input parameters of this 

problem have a (non-)dominant influence on the two resulting outcomes, the cumulated heat 

loss and the peak mould growth. 

Different participants of the Common Exercise applied different methods based on different 

sampling techniques.  The equivalency of their resulting sensitivity indicators was however ve-

rified, and after normalisation and ordering the different outcomes could be reliably compared.  

This comparison was based on a fixed-climate and a variable-climate case, wherein the correct 

identification of (non-)dominant parameters was the primary objective.  The assessment show-

ed that only the following methods led to reliable results: 

 linear regression, indicator standardised regression coefficients (eq. 4.10) 

 Pearson’s coefficient, indicator moment correlation coefficient (eq. 4.8) 

 Spearman’s coefficient, indicator rank correlation coefficient (eq. 4.8 with ranks) 

 elementary effects method (EEM), indicator average impact (eq. 4.7) 

 Fourier amplitude sensitivity test (FAST), indicator first order (eq. 4.14) 

 scatterplots 

Our final recommendation would be the combined use of Spearman’s coefficients and scatter-

plots.  The former is very easy in application, given its implementation in multiple software en-

vironments.  And contrary to the EEM and FAST approaches, far less runs are required to come 

to reliable results.  Moreover, these runs can be based on standard Monte Carlo sampling, the 

approach that also underpins uncertainty quantification (see Chapter 3) and metamodel deve-

lopment (see Chapter 5).  The complementary use of scatterplots, which can be deduced from 

the same sampling data, sidesteps the monotonicity restriction of the Spearman’s coefficients. 
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5.1 Introduction 

5.1.1 Metamodelling methods 

Monte Carlo analyses proved to be very helpful for uncertainty quantification (Chapter 3) and 

sensitivity analysis (Chapter 4) for performance and robustness optimisation (Chapter 6). In 

order to perform these probabilistic assessments, a simulation model is needed and is run for 

several settings of the input parameters. Standard methods as explained and applied in 

previous mentioned chapters require tens or even millions of such simulation runs. Depending 

on the complexity of the simulation model, the execution time of one simulation can take from 

a few seconds to even some days. This implies that often only a small number of deterministic 

runs is feasible, thus hindering the application of the standard methods. The execution time of 

these simulation models is thus unfortunately a restrictive factor.  

Instead of using these time inefficient simulation models for such probabilistic assessments, 

the use of metamodels can be considered. Such a metamodel mimics the original simulation 

model via a simplified mathematical model: the simulation outputs can be approximated with 

high confidence as illustrated in Figure 5.1, comparing the CHL for Common Exercise 4 (see 

Addendum 4) as predicted by one of the metamodels and the reference simulation. A 

simulation run then only takes a fraction of the original simulation time, hence allowing 

significant computational savings. In order to formulate such a model, a limited number of 

input combinations is run in the original model. The input/output combinations are then used 

to statistically fit the coefficients of these mathematical functions. This results in an 

independent model to estimate new input/output combinations within the range of the 

sampled combinations. 

 

 

Figure 5.1: Metamodel example. 

0

10

20

30

40

50

60

0 10 20 30 40 50 60

m
e

ta
m

o
d

e
l

original model



Annex 55 RAP-Retro           Subtask 2: Probabilistic tools 57 

Numerous methods for metamodelling are available in literature. This chapter will explain and 

evaluate only polynomial regression, multivariate adaptive regression splines (MARS), kriging 

and neural networks to decide on which are most reliable, as explored in Common Exercise 4 

of Subtask 2. Furthermore, one of the important aspects is the influence of the sample size on 

the different methods, as this will determine the feasibility and calculation efficiency. 

Therefore, methods with good approximation ability using only a few samples are preferable.  



Annex 55 RAP-Retro           Subtask 2: Probabilistic tools 58 

5.2 Presentation of methods 

5.2.1 Basic principles 

Metamodels are formulated by fitting a mathematical function to input/output combinations. 

To create this set of input/output combinations, the original model is run for a sample of input 

parameters. These combinations are called the training set. When multiple output parameters 

are considered, each output parameter is usually modelled separately, although it is possible 

with some methods to fit them simultaneously. In general, all input and output data is 

standardised to overcome the influence of the parameter units. This is done by transforming 

the data to zero mean and unit variance, also known as calculating the z-score. Standardisation 

can reduce calculation time and errors. 

In metamodelling, the training data can be perfectly fit, while unseen data are not approxima-

ted well at all, especially for larger training sets. This phenomenon is called overfitting and 

emphasises the importance of testing the model performance on unseen data, as will be done 

in Section 5.3. Extra input/output combinations, the validation set, are therefore created and 

used to compare the predictions of the metamodel with the original model output. 

Overfitting can be avoided by reducing model complexity during the training stage. For that 

purpose the Euclidian norm of the coefficients vector can be limited through regularisation, as 

is done in polynomial regression (5.2.2), radial basis function networks (5.2.5.1) and sigmoidal 

transfer function networks (5.2.5.2). Alternatively, the generalisation ability can be improved 

by reducing the number of coefficients of a complex model, what is called pruning, as is done 

in polynomial regression (5.2.2) and the multivariate adaptive regression splines method 

(5.2.3). A model selection criterion to trade off model complexity against goodness-of-fit can 

be used as well, as applied in multivariate adaptive regression splines (5.2.3) and radial basis 

function networks (5.2.5.1). Finally, the whole sample set can be divided into training, 

validation and testing data. The training data and validation data is then used to train the 

model, while the testing data is used to compare different models, as in done in sigmoidal 

transfer function networks (5.2.5.2). Dividing into training and testing samples is done multiple 

times in cross-validation, as in polynomial regression (5.2.2). 

5.2.2 Polynomial regression 

Polynomial regression is one of the most common metamodelling techniques: it fits an nth 

order polynomial between the sampled input and output data. In general, the model is a 

function of the form 
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with y is the estimated output parameter, x the input parameter values, k the number of input 

parameters, m the order of the polynomial and b the regression coefficients (Jin et al. 2001). 

These coefficients are determined with the least squares method. 
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This method can be optimised to avoid overfitting, as in Tikhonov regularisation (Wikipedia 

2013). Not only are the summed squares of the errors minimised, but this sum is extended to 

penalise large coefficients. Therefore, the least square cost function is modified by an 

additional term which aims at keeping the norm of the solution vector small. This extra term is 

the squared norm of the regression coefficients multiplied with a regularisation factor, which is 

selected based on cross-validation. This cross-validation is performed by dividing the training 

data set into several segments.   

One of the advantages of polynomial regression is that the regression coefficients can be used 

directly in sensitivity analysis (Chapter 3). The metamodel is easy to understand as well. 

Unfortunately, the disadvantage is that the calculation time exponentially increases with the 

number of input parameters and the order of the polynomial. Furthermore, more training data 

is recommended when the order and the dimension increases. In fact, the number of initial 

samples should be higher than the number of regression coefficients (Johnson et al., 2010). 

The latter can be avoided by pruning. As will be seen in the application of this method 

however, good models can be obtained for underdetermined problems as well. 

First, second and third order polynomials are studied in this chapter. For example, a fourth 

order polynomial with 14 input parameters would have 3600 coefficients. Hence, this is 

computationally expensive and ideally needs more than 3600 training samples. A fifth order 

polynomial would even have 11628 coefficients. The Matlab extension polyfitn (D’Errico, 2012) 

is used for fitting the polynomial models. To avoid overfitting for larger training sets, this algo-

rithm is adjusted by means of the Tikhonov regularisation.  For smaller training sets, the step-

wisefit function (Mathworks, 2013) is also used, which adds and removes terms from the input 

vector based on their statistical significance to reduce the number of coefficients (pruning). 

5.2.3 Multivariate adaptive regression splines (MARS) 

Multivariate adaptive regression splines (MARS) can be seen as an extension of polynomial 

regression. The models are also of the form 





k

i

ii xBcy
1

)(   (5.2) 

with y the estimated output parameter, x the input parameter values, k the number of basis 

functions Bi and ci the weight factors (Friedman 1991, Jin et al. 2001). In contrast to polynomial 

regression, non-linearities between output and input can be taken into account because of the 

use of hinge functions. A hinge function has the form max(0,x-constant) or max(0,constant-x) 

and thus produces a kink. The basis functions in (5.2) are a constant, a hinge function, or a 

product of hinge functions to take interactions into account (Wikipedia 2014).  

Both the hinge functions and weight factors have to be determined, which is done through a 

forward selection and backward deletion iterative approach. In the forward phase, basis 

functions giving largest reduction of training error are added. This phase ends when  

- the (change in) training error becomes small, 

- the user-defined maximum number of terms is reached, 
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- or more weight factors than training samples are expected in the next iteration. 

Typically an overfit model is the result. In the backward phase the model is pruned by trading 

off goodness-of-fit against model complexity. The least effective terms are deleted one by one 

to improve the generalisation ability (Jekabsons 2011, Wikipedia 2014).  

The major advantages of the MARS technique are that the model construction is very time-

efficient and easy to understand. Unfortunately, the accuracy for smaller training sets seems 

to be low.  

Both piecewise-linear and piecewise-cubic models are created in this chapter with the Matlab 

toolbox ARESLab (Jekabsons 2011). The latter can have basis functions that are a product of 

two hinge functions. In R, MARS modelling can be done with the mda package (Hastie et al., 

2013). It seems that for small sample sizes the R code is better. The model settings are all 

default except for the maximal number of parameter interactions, which is set equal to the 

number of parameters, to allow more model complexity. The maximum number of terms can 

be changed to increase the complexity as well. 

5.2.4 Kriging 

Kriging has its origin in the field of geostatistics and interpolates the value of a random field at 

an unobserved location from observations at nearby locations. The models are of the form 
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ii 


  (5.3) 

with y the estimated output parameter, x the input parameter values, k the number of fixed 

polynomial functions fi, bi the regression coefficients and Z a realisation of a stochastic process 

with mean zero and spatial correlation function given by 

   jiji xxRxZxZ ,)(),(cov 2  (5.4) 

where ² is the process variance and R the correlation. The first term is analogous to the 

polynomial regression and provides a global model, while the second term interpolates the 

different sampled data points (Simpson et al., 2001). The coefficients are determined with the 

least squares method, analogously to polynomial regression. 

The major disadvantage of this method is, as for polynomial regression, the curse of 

dimensionality. As numerous regression coefficients need to be calculated for high orders and 

several input parameters, the calculation time can be very long. Furthermore, the method is 

complicated and mistakes are therefore possible. Moreover, Jin et al. (2001) state that kriging 

does not perform well if the model is noisy because of the interpolation technique. 

Several correlation functions can be applied, such as exponential, linear, spherical, cubic and 

spline. However, the Gaussian correlation function is most frequently used.  First and second 

order models are studied with Matlab toolbox DACE (Nielsen et al., 2002). An initial guess on 

the correlation function parameters and lower and upper bounds must be provided. However, 

it is not clear how to determine these. Therefore, the same values as in the user manual 
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example can be taken: initial guess 10, lower bound 0.1 and upper bound 20 for all 

parameters. In R, the kriging function is supplied by the fields package (Furrer et al., 2013).  

5.2.5 Neural networks 

A neural network is composed of an interconnected group of artificial neurons. In this chapter, 

multilayer perceptrons are used. These are structures consisting of several layers: input layer, 

output layer and multiple hidden layers with neurons, as illustrated in Figure 5.2. The neurons 

contain the ‘transfer functions’. Each neuron is associated with a weight and possibly also a 

bias, which are trained by least-squares minimisation (Simpson et al., 2001).  

One of the advantages of neural networks is that the calculation time is not increasing 

exponentially with the amount of input parameters. Therefore, this method is often used for 

high-dimensional problems. The disadvantage of this technique is that it is difficult to select 

the best settings because of the multiple layers. Two categories of constructions are explored 

in this chapter: radial basis function network and sigmoidal transfer function networks. 

 

Figure 5.2: Neural network with three hidden layers (Galkin and Lowell, 2013). 

5.2.5.1 Radial basis function networks (RBF) 

Radial basis function networks are single hidden layer neural networks as illustrated in Figure 

5.3. Each of the n components of the input vector x feeds forward to m n-dimensional basis 

functions hj whose outputs are linearly combined with weights wj into the network output f(x).  

A radial basis function network is thus of the form 
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and a typical Gaussian basis function is of the form  
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with cj the center and rj the radius of basis function hj (Orr, 1996). Other basis functions are 

available as well, like the Cauchy, the multiquadric and the inverse, as illustrated in Figure 5.4. 

All functions are applied in this chapter.  

 

Figure 5.3: Radial basis function network (Orr, 1996).  

 

Figure 5.4: Radial basis functions with center 0 and radius 1: Gaussian (green), Cauchy (cyan), 
multiquadric (magenta) and inverse (red).  (Orr, 1996).  

 

Both weights and centers and radii of basis functions have to be determined. According to 

(Orr, 1999), the centers of the basis functions are generally equal to the input matrix. Each 

basis function center is thus n-dimensional and has many basis functions (or neurons) as initial 

samples can be created. The radii are for each dimension generally chosen equal to the span of 

the training set inputs (maximal value minus minimal value). Each basis function thus has the 

same radius. Preferably, a scale factor is applied to this radius to avoid underfitting. Therefore 

scale factors between 10% and 100% with steps of 10% are selected in this chapter. Each scale 

factor is used to create a network and the network with the lowest model selection score (eg. 

generalised cross-validation) is selected (Orr, 1996).  
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Either a forward selection or a ridge regression can be performed to select some of the 

available basis functions (including a bias unit), similar to the MARS method. A forward 

selection compares models made up of different subsets of basis functions and thus selects 

the number of hidden nodes. Basis functions that most reduce the sum-squared-error are 

added one by one, until the model selection criterion score stops decreasing to avoid too 

complex models. Weight factors are determined based on the sum-squared-error as well. 

Ridge regression selects all available basis function and augments the sum-squared-error with 

an extra term penalising large weights, to avoid overfitting analogously to regularised 

polynomial regression (Orr, 1996).  

The RBF networks are implemented with the RBF toolbox in Matlab (Orr, 1999).   

5.2.5.2 Sigmoidal transfer function network 

These networks consist of a first layer with input neurons, a final layer with output neurons, 

and any number of hidden layers in between. The transfer functions in all layers are sigmoidal 

except the final layer, which is linear. A weighted sum of the input parameter values xi with 

weights wi and a bias value  feeds forward to m sigmoid functions (Figure 5.5) in a feed 

forward construction. This is repeated if there are more hidden layers, and then outputs of the 

final hidden layer y are linearly combined with a bias and weights wj into the network output 

f(x) (Simpson et al., 2001). With a cascade forward construction, connections are also possible 

between non-adjacent layers.  

The output of the sigmoidal transformation of the jth neuron is given by 
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with y the output, and  the value going into the neuron (Figure 5.5). Tan-sigmoidal functions 

are used in this chapter and illustrated in Figure 5.5. 

This network is similar to the radial basis function network, but the transfer functions are 

different, more hidden layers are possible, and the input parameter values are weighted. The 

initial samples are divided into three subsets: 

- 70% is used as the training set to determine weights and biases 

- 15% is used as a validation set , used during training to overcome overfitting 

- 15% is used as a test set to determine the optimal combination of neural network 

architecture and training algorithm. 
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Figure 5.5: Neuron in neural network (Simpson et al., 2001) (left) and tan-sigmoid transfer 
function (Mathworks, 2014a) (right). 

Another approach is also used to determine the optimal combination of network architecture 

and training algorithm: instead of using a model selection criterion to trade off model 

complexity against goodness-of-fit, all combinations of the following are explored: 

1. Network type [feed forward, cascade forward] 

2. Number of hidden layers [1,2] 

3. Number of neurons per hidden layer (assumed to be the same per layer) [1,2,…,20] 

4. Training algorithm [Levenberg-Marquardt, Bayesian regularization] 

The Bayesian regularisation training algorithm only needs a training set and test set, and 

therefore the validation set is added to the training set. To determine the optimal 

combination, the mean squared error performance criterion is used on the test set. The neural 

networks were created using the Matlab Neural Network toolbox (Mathworks, 2014b). 
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5.3 Evaluation of metamodelling 
approaches 

5.3.1 Calculation object 

Comparison of the different metamodelling methods and the impact of sample sizes was the 

aim of Common Exercise 4 (see Addendum 4). The considered calculation tool in this common 

exercise  is the Matlab cold attic model which determines hygrothermal performances of cold 

attics, as already described in Chapter 1. This model includes wind-pressure and thermal-stack 

induced attic ventilation, thermal and hygric inertia of finishing materials in the attic, and long- 

and short-wave radiation on exterior surfaces. 14 different input parameters – material 

properties, component characteristics, geometric dimensions – are used to compute two 

performance criteria: the cumulated heat loss through the ceiling in January (CHL [kWh/m²]), 

and the yearly peak mould growth index for the wooden underlay (PMG [-]). The input 

parameters are collected in Table 5.1 with their probability distributions and are coded to 

easily use them in metamodelling.  

Table 5.1: Variable input parameters. 

 

5.3.2 Outcomes of the exercise 

Three solutions for Common Exercise 4 were received, as contributed by Marcus Fink & Florian 

Antretter (Fraunhofer, Germany), Payel Das (University College London) and Liesje Van Gelder 

(KU Leuven, Belgium). Different participants use different sampling schemes in their solutions. 

To reliably compare the different metamodelling techniques, in this chapter all samples are 

provided by optimised Latin Hybercube Sampling schemes, as this guarantees a uniform sam-

pling of the probability space. 

Input parameter Distribution* Code 

Height of building (m) U(4,8) X1 

Area of ceiling floor and roof (m²) U(50,200) X2 

Orientation of one of eave sides (-) U(0,180) X3 

Venting area per meter eave (m²/m) U(0.001,0.05) X4 

Length of building (eave side) (m) U(7,20) X5 

Thickness of wooden underlay (m) U(0.010,0.020) X6 

Vapour diffusivity of wood (m²/s) N(10
-6

,2 10
-7

) X7 

Initial relative humidity of wood (-) U(0.5,0.9) X8 

Thermal conductivity of wood (W/mK) N(0.13,0.02) X9 

Resistance of roof insulation (m²K/W) U(0,1) X10 

Effective leakage area of ceiling (m²) U(10
-5

,5 10
-5

) X11 

U-value of the ceiling (W/m²K) U(0.2,5) X12 

Indoor temperature (°C) N(20,1.5) X13 

Indoor moisture supply (kg/m³) N(0.005,0.002) X14 
* Explanation of symbols: 
U(xlow,xupp): uniform distribution with xlow the lower and xupp the upper limit 
N(xavg,xstd): normal distribution with xavg the average and xstd the standard deviation 
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5.3.3 Quality assessment procedure 

Metamodels for CHL and PMG are formulated as described in 5.2 based on five different initial 

sample sizes: 5, 15, 50, 150 and 2000 training samples. The models based on 2000 training 

samples can be considered as the foundation for creating the best possible metamodels. To 

assess the quality of the developed metamodels, a set of 100 validation samples is used. Both 

Root Mean Squared Errors (RMSE) and Maximum Absolute Errors (MAE) between the original 

and predicted outputs are calculated as  

n

yy
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n

t

tt
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

 1     (5.8) 
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with yt the original output, yt the predicted output and n the number of validation samples. 

These indicators are compared for the metamodelling techniques and sample sizes. The RMSE 

indicates the overall approximation ability of the metamodel; the lower the value, the better 

the approximation, as can be seen in Figure 5.6 for two of the following metamodels. The MAE 

indicates the maximal error that can be expected and is indicated in Figure 5.6 as well. 

Furthermore, as cumulative distribution functions (CDF) are used in probabilistic analysis and 

design, the CDFs of the validation set are compared with the CDFs of the predicted outputs. 

This can also indicate whether the metamodels over- or underestimate the original outputs.  

 

  

Figure 5.6: Scatter plots of reference solution and two of following metamodels with RMSE and 
MAE indicated. 
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5.3.4 Result comparison 

5.3.4.1 Polynomial regression 

For comparison of first, second and third order regularised polynomial regression models, 

RMSE and MAE are presented in Figure 5.7 for CHL and in Figure 5.8 for PMG. These figures 

show the results for several initial sample sizes. As discussed before, more samples than 

coefficients are preferred. Hence, the underinformed models can be slightly improved by 

reducing the number of coefficients as shown for the second order models. For example, no 

interaction terms are taken into account for the metamodels based on 5 and 15 training 

samples.   

Figure 5.9 shows the CDFs of the validation output data in comparison with the predicted 

outputs of the first, second and third order polynomial regression models based on 2000 initial 

samples. RMSE, MAE and CDFs all indicate that a third order polynomial can approximate the 

original model the best. A second order model is however a better choice because of the 

reduced number of coefficients. Furthermore, it performs only slightly worse than the third 

order model.  

 

Figure 5.7: Comparison RMSE and MAE of validation data and regularised polynomial 
regression models for CHL. 

 

Figure 5.8: Comparison RMSE and MAE of validation data and regularised polynomial 
regression models for PMG. 
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Figure 5.9: Cumulative distribution functions for reference solution and polynomial metamodels 
based on 2000 initial samples.  

 

Figure 5.10: Cumulative distribution functions for reference solution and second order 
polynomial metamodels based on several initial sample sizes.  

Figure 5.10 shows the CDFs for the improved second order polynomial regression with 

different initial sample sizes. All initial sizes can result in acceptable second order polynomial 

models for CHL, if of course the number of estimated coefficients is lower than the sample 

size. The PMG model is much harder to approximate for polynomial regression models. One 

can also see that the PMG model makes an overestimation for low values. 

5.3.4.2 Multivariate adaptive regression splines (MARS) 

For comparison of first and second order MARS models, RMSE and MAE are presented in 

Figure 5.11 for CHL and Figure 5.12 for PMG. Both figures show the results for several initial 

sample sizes. Figure 5.13 shows the CDFs for first and second order MARS models based on 

2000 initial samples in comparison with the original model for the validation set. RMSE, MAE 

and CDFs all indicate that a second order MARS model is slightly better to approximate the 

original model than a first order model.   

Figure 5.14 shows the CDFs for second order MARS models with different initial sample sizes. 

When more samples than input parameters are available, the results are satisfying. The CHL 

model is easier to mimic than the PMG model and one can see that the PMG makes an 

overestimation for low values.  
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Figure 5.11: Comparison RMSE and MAE of validation data and MARS models for CHL. 

 

Figure 5.12: Comparison RMSE and MAE of validation data and MARS models for PMG. 

 

Figure 5.13: Cumulative distribution functions for reference solution and MARS metamodels 
based on 2000 initial samples.  
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Figure 5.14: Cumulative distribution functions for reference solution and MARS metamodels 
based on several initial sample sizes. 

5.3.4.3 Kriging 
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samples in comparison with the original model for the validation set.  RMSE, MAE and CDFs all 

indicate that a second order kriging model is better to approximate the original model, but 

more initial samples are needed.  

 

Figure 5.15: Comparison RMSE and MAE of validation data and kriging models for CHL. 
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Figure 5.16: Comparison RMSE and MAE of validation data and kriging models for PMG. 

Figure 5.17: Cumulative distribution functions for reference solution and kriging metamodels 

based on 2000 initial samples. 

Figure 5.18 shows the CDFs for second order kriging models with different initial sample sizes. 

The CHL model is easier to mimic than the PMG model. Againt the PMG model makes an 

overestimation for low values. 

 

Figure 5.18: Cumulative distribution functions for reference solution and kriging metamodels 
based on several initial sample sizes.  
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5.3.4.4 Neural networks 

For comparison of several neural networks, RMSE and MAE are presented in Figure 5.19 for 

CHL and Figure 5.20 for PMG. Both figures show the results for several initial sample sizes. 

 

Figure 5.19: Comparison RMSE and MAE of validation data and neural networks for CHL. 

 

Figure 5.20: Comparison RMSE and MAE of validation data and neural networks for PMG. 
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(Mathworks 2014b) can be used for that purpose. 
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Figure 5.21: Cumulative distribution functions for reference solution and neural network 
metamodels based on 2000 initial samples. 

 

Figure 5.22: Cumulative distribution functions for reference solution and neural network 
metamodels based on several initial sample sizes, using the sigmoidal neural network. 
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 (a)  (b) 

 (c)  (d) 

 

 (e) 
 (f) 

Figure 5.23: Cumulative distribution functions for reference solution of several metamodels 
based on several initial sample sizes. 
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Figure 5.24: Comparison RMSE and MAE of validation data and CHL metamodels. 

  

Figure 5.25: Comparison RMSE and MAE of validation data and PMG metamodels. 

For 15 samples, a second order polynomial can mimic CHL and PMG the best, but for more 

samples the MARS and neural network methods perform better. As models based on 50 or 150 

training samples are significantly better than models on 15 training samples, Figure 5.26 shows 

scatter plots of the best performing metamodels for 50 and 150 training samples. One can see 

that for CHL 50 training samples are sufficient in approximating the original model. For PMG, 

150 training samples can improve the agreement, but it seems to be much harder to have very 

accurate metamodels. 

When comparing used metamodelling techniques in usability, MARS methods are slightly 

preferred because of their simplicity and very efficient computation time. However, depending 

on nonlinearity, dimension and noisy behaviour of the initial model, other techniques can 

provide better models (Jin et al., 2001). 

 

 

 

 

 

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140 160

R
M

SE

initial sample size

CHL 

Polynomial 2nd order MARS 2nd order

Sigmoidal neural network

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160

M
A

E

initial sample size

CHL 

Polynomial 2nd order MARS 2nd order

Sigmoidal neural network

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120 140 160

R
M

SE

initial sample size

PMG 

Polynomial 2nd order MARS 2nd order

Sigmoidal neural network

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140 160

M
A

E

initial sample size

PMG 

Polynomial 2nd order MARS 2nd order

Sigmoidal neural network



Annex 55 RAP-Retro           Subtask 2: Probabilistic tools 76 

  
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.26: Scatter plots of reference solution and best metamodel for 50 (top) and 150 
(bottom) initial samples. 
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5.4 Conclusions 

This chapter provided an overview of metamodelling methods, applied to a hygrothermal 

calculation object. Four methods with several settings were extensively compared: polynomial 

regression, multivariate adaptive regression splines (MARS), kriging and neural networks. All 

models were created based on a set of input/output combinations, the training set, with five 

initial sample sizes: 5, 15, 50, 150 and 2000. To assess the quality of the developed 

metamodels, a set of 100 validation samples was used. The best modeling techniques for this 

calculation object were second order polynomial regression, second order MARS and sigmoidal 

transfer function networks. Kriging methods were excluded as these techniques provide no 

better results than polynomial regression. When comparing used metamodelling techniques in 

usability, MARS methods are slightly preferred because of their simplicity and very efficient 

computation time. However, depending on nonlinearity, dimension and noisy behavior of the 

initial model, other techniques can provide better models for other calculation objects.   

Generally, the more training samples available, the better the metamodel is constrained. Un-

fortunately, it is not always possible to create as many samples as we want due to calculation 

time. For that reason, it might be important to examine how accurate the metamodel has to 

be. However, as that is dependent on the goal of the model, it is not straightforward either. 

Remember that the accuracy should be checked on validation data not used in the training and 

that the metamodel can only be used within the range of the training data values. Metamodels 

built on 50 to 150 training samples were already reasonably accurate for the considered 

calculation object. However, this might be dependent on the original model. It should be 

mentioned that the accuracy of the metamodel is at least as important as the calculation time. 

As long as we need less initial samples for the metamodel than we should need for a Monte 

Carlo analysis on the original model, we can expect that time (and thus money) will be saved.  

The number of runs required for good approximating power already yields decent initial 

uncertainty and sensitivity estimates. Therefore, a metamodel is only useful if more samples 

are needed than is feasible with the original model. To that extent, highly computational 

sensitivity methods might benefit from metamodelling. Furthermore, calculation time for 

optimization problems, as illustrated in Chapter 6, can greatly be reduced by them. 

Further modifications are possible to potentially approve some metamodels. A prior exclusion 

of less significant model parameters can help to reduce the number of coefficients in the 

metamodel and thus to reduce calculation time, especially for polynomial regression. 

Therefore, the metamodel algorithm can be improved by first calculating sensitivity indices of 

training samples. As seen in Section 5.3, some outputs are easier to metamodel than others. A 

solution might be to convert these outputs into classification problems, as discussed in Section 

5.3.4.4. Additional constraints can be added to the metamodels as well and might improve 

them. For example, one can constrain CHL to be positive and limit PMG between 0 and 6. 

Dynamic metamodels of underlying physical time-dependent properties might improve the 

approximating power, but were beyond the scope of this chapter. 
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6.1 Introduction 

6.1.1 Background 

Building performance simulations can be used to calculate the impact of a design option on 

the energy use and indoor air quality in a dwelling, and uncertainty analyses can be used to 

explore the associated variation with the impact as a result of variabilities in dwelling 

characteristics across a stock, weather variability, economic future, and workmanship (Chapter 

3). Metamodelling methods can also be used to significantly reduce the computational running 

time associated with carrying out uncertainty analyses (Chapter 5). There is still however the 

question of how to select the optimal design option from a choice of several possible options, 

and in particular when the building performance simulations have been carried out 

probabilistically. 

The process of determining the optimal design option involves first defining a design 

parameter space to explore. Design variables typically explored in the case of the optimization 

of residential energy efficiency interventions include building geometry (Arumi, 1977; D’Cruz 

et al., 1983; Gero et al., 1983; Peippo et al., 1999; Tuhus-Dubrow and Krarti, 2010),  glazing 

properties (Arumi, 1977; Asadi et al., 2012a; Bouchlaghem, 2000; D’Cruz et al., 1983; Diakaki et 

al., 2008; Fesanghary et al., 2012; Gero et al., 1983; Johnson et al., 1984; Peippo et al., 1999; 

Radhi, 2008; Tuhus-Dubrow and Krarti, 2010), fabric properties of the building envelope (Asadi 

et al., 2012a; Bouchlaghem, 2000; D’Cruz et al., 1983; Das et al., 2013; Diakaki et al., 2008; 

Fesanghary et al., 2012; Peippo et al., 1999; Radhi, 2008; Sambou et al., 2009; Tuhus-Dubrow 

and Krarti, 2010; Wang and Xu, 2006), operation of equipment such as solar shading (Johnson 

et al., 1984; Tuhus-Dubrow and Krarti, 2010) and heating, ventilating, and air-conditioning 

system parameters (Kelly and Bushby, 2012; Wright et al., 2002). 

The next step is to specify performance criteria for comparing the various design options. 

Choosing an economically-driven performance criterion is a natural choice for energy-

efficiency interventions, enabling the decision-maker to easily compare different options. It 

also creates a single objective optimization problem, rather than a multi-objective optimization 

problem in which several criteria are used to compare design options. There are studies that 

simply use the cost of energy savings due to changes in the heat loss through the building 

fabric as a measure for comparing design options (Ahern et al., 2013; Charlier and Risch, 2012; 

Das et al., 2013; Hesaraki and Holmberg, 2013). The energy savings can be compared directly 

to the initial investment required for the implementation of the scenario (Garrido-Soriano et 

al., 2012; Goodacre et al., 2002), or through the number of years for the initial investment to 

be repaid through energy savings, as given by the Payback Period criterion (Aste et al., 2012; 

Chan and Chow, 2010; Popescu et al., 2012; Rasouli et al., 2013; Sadineni et al., 2011). The Net 

Present Value gives a current ‘value’ for the intervention after a chosen number of years 

according to the initial investment, maintenance costs, and energy savings, all subject to a 

future change in energy price and inflation (Malatji et al., 2013; Turner et al., 2013). The 

Return on Investment (𝑅𝑂𝐼) criterion is calculated as the ratio of the Net Present Value 
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criterion and a sum of the investment and maintenance costs (Kuckshinrichs et al., 2010). The 

Internal Rate of Return criterion is the value inflation would need to be so that the Net Present 

Value of an intervention after the chosen number of years is zero (Goodacre et al., 2002). 

Another variation is the Equivalent Annual Cost, which divides the Net Present Value of an 

intervention over its lifespan by the present value of an annuity or loan repayment factor 

(Mata et al., 2013). Life-cycle cost analysis also uses Net Present Value over the lifespan  of 

each intervention (Fesanghary et al., 2012; Ramesh et al., 2012; Tuhus-Dubrow and Krarti, 

2010), and has been modified to incorporate life-cycle assessment, which takes into account 

environmental impacts associated with the transport and construction of any material 

intervention (Gu et al., 2008).  

There are several different types of algorithms for exploring the design space. These include 

gradient-based methods such as the Levenberg-Marquardt algorithm that looks for the point 

where the objective function gradient is closest to zero. They need that the objective functions 

have particular mathematical properties like continuity and the derivability and get stuck in 

local minima. There are several derivative-free direct search methods that range from a 

systematic evaluation of evenly-spaced points covering the design space to methods such as a 

pattern search in which each dimension is sequentially trialled at a coarse resolution, and then 

when no further improvement is possible, the interval size is halved. There are also derivative-

free stochastic algorithms that range from random sampling of the design space to highly 

sophisticated methods, designed to deal with complex optimization problems. The most 

commonly employed in the optimization of retrofitting strategies is the genetic algorithm, 

which mimics evolutionary mechanisms to evolve a population of possible solutions to the 

optimal solution (Malatji et al., 2013; Sambou et al., 2009; Tuhus-Dubrow and Krarti, 2010; 

Wright et al., 2002). Excellent reviews have been carried out by Attia et al.  ( 2013) and Evins 

(2013). 

Several aspects of the schemes implemented in the literature to find the optimal energy 

efficiency scenario could still be improved. For example, although thermal comfort is often 

incorporated as an additional objective function in the optimization procedure or imposed as a 

constraint, the impacts of interventions on indoor air quality are hardly considered (Attia et al., 

2013). Only a handful of studies treat uncertainty and variability in building characteristics and 

future economic scenarios when carrying out optimization procedures, as also identified by 

Attia et al. (Attia et al., 2013). Uncertain economic criteria are considered in the work of 

Rasouli et al. (Rasouli et al., 2013) and Hopfe et al. (Hopfe, 2009) investigated the propagation 

of uncertainty through a building design optimization algorithm to aid robustness. This Chapter 

will illustrate the impact of alternative formulations for determining the optimal design option 

in the context of a probabilistic analysis, illustrated on the attics of a typical Swedish stock of 

dwellings. 
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6.2 Presentation of methods 

In this section, we introduce the economic performance criteria explored here in the 

assessment of design options, different methods for deriving a deterministic objective function 

from a non-deterministic distribution of performance criteria, and different schemes for 

carrying out the optimization. 

6.2.1 Performance criterion 

Four different economic performance criteria are investigated for assessing the performance 

of a particular design option, which are described in detail below. As a probabilistic approach is 

used, each design option will be associated with a performance criterion distribution rather 

than a single deterministic value. 

6.2.1.1 Payback period (𝑷𝑩) 

An investment that leads to a cash flow in the future can be assessed by the payback period 

(𝑃𝐵), which is a measure of how long it takes for the initial investment to be paid back, 

without a correction for inflation or change in energy costs: 
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where 𝐼0 is the initial cost of the design option, ∆𝐾𝐸,𝑙 is the change in energy costs in year 𝑙 and 

is given by:  

lheatinguseElE EPK ,,,        (6.2) 

with 𝑃𝐸 the price per kWh. and ∆𝐸𝒖𝒔𝒆,ℎ𝑒𝑎𝑡𝑖𝑛𝑔,𝑙 the difference between the original and 

retrofitted dwelling in year 𝑙.  

6.2.1.2 Net Present Value (𝑵𝑷𝑽) 

The present value of future cash flows is discounted back to the time of the investment to 

compare different investment alternatives. The total Net Present Value (𝑁𝑃𝑉) after a chosen 

number of years, 𝑦, since a design option is defined as: 
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where 𝐼0 and ∆𝐾𝐸,𝑙  are defined above, 𝐼𝑀 is the maintenance cost, 𝑟𝐸 is the inflation-corrected 

annual increment in energy cost (0 < 𝑟𝑒 < 𝑙), and 𝑎 is the inflation-corrected present value 

factor (0 < 𝑎 < 𝑙).  
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6.2.1.3 Return on investment (𝑹𝑶𝑰) 

To compare alternatives with different initial investment costs, Return on Investment (𝑅𝑂𝐼) 

can be used. The 𝑅𝑂𝐼 is a measure of the efficiency of the investment defined as the ratio of 

the 𝑁𝑃𝑉 and initial investment: 

MII

NPV
ROI




0

       (6.4)  

where 𝑁𝑃𝑉, 𝐼0, and  𝐼𝑀 are defined above. Therefore it is similar to the payback period, but 

takes into account maintenance costs, inflation, and changes to energy prices. 

6.2.1.4 Internal rate of return (𝑰𝑹𝑹) 

The Internal Rate of Return (𝐼𝑅𝑅) is the inflation-corrected present value factor, 𝑎, for the 

design option where the 𝑁𝑃𝑉 equals 0, i.e. 
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where 𝑎𝐼𝑅𝑅 is calculated by an iterative process. 

6.2.2 Objective function 

A deterministic objective function needs to be extracted from the probabilistic performance 

criterion, but now with the advantage that the expected value takes into account uncertainty 

and variabilities in the model inputs, and some information regarding the shape of the whole 

distribution can be incorporated into its definition. Many different moments can be considered 

in the objective function, but in this work we explore moments that reflect a varying degree of 

risk. 

6.2.2.1 Risk neutral 

Risk-neutral decision makers are not concerned with risk and therefore the negative of the 

expected value of the performance criterion (denoted by 𝑦) can be directly minimized thus 

allowing the expected value to be maximized: 

)(yE         (6.6) 

6.2.2.2 Risk-taking 

Risk-taking decision makers are willing to take a risk that the probability of a poor performance 

is increased if it also means that the probability of a very good performance is also increased. 

In this case a weighted-sum of the negative of the expected value and the dispersion of the 

performance criterion distribution is minimized: 

0),()(   yyE       (6.7) 

A negative 𝜃 allows the dispersion of the distribution to be maximized while the expected 

value is also maximized. 
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6.2.2.3 Risk-averse 

Risk-averse decision makers are not willing to take a risk on their investment and would like to 

be assured of little variation in the result for a stock, or specifically that the probability of a 

negative performance criterion is minimized. Therefore either the following can be minimized: 

0),()(   yyE       (6.8) 

or 
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In the former a positive 𝜃 limits the dispersion in the performance criterion distribution, while 

the expected value is being maximized. In the latter, a positive 𝜇 forces the probability of the 

performance criterion being less than 0 to be minimized, while the expected value is 

maximized. 

The two formalisms for the objective functions in Sections 6.2.2.2 and 6.2.2.3 are essentially a 

form of weighted-sum multi-objective optimization with varying weights between the 

expected value and the dispersion of the performance criterion distribution. 

6.2.2.4 Effectiveness and robustness criteria 

An alternative definition of the objective function is presented here that also considers the 

expected value and the spread of the performance criterion distribution, but through the 

effectiveness 𝜀 and robustness 𝑅𝑃 criteria. It relies on a scheme where the design options are 

already sampled a priori, for example as in the scheme proposed in Section 6.2.3.1 or 6.2.3.1 

below. The effectiveness and robustness criteria can then be determined for each design 

option 𝑥𝑛 as follows (Van Gelder et al. 2013, under review): 
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where 𝑃 is the user-specified percentage of included sample points, 𝑦𝑘  is the 𝑘𝑡ℎ percentile of 

the performance criterion distribution corresponding to all the design options combined, 

𝑦𝑘(𝑥𝑛) is the 𝑘th percentile of the performance criterion distribution associated with design 

option 𝑥𝑛, and 𝑦𝑚𝑎𝑥 is the maximum value that 𝑦 takes across all design options, which is not 

an outlier, where an outlier is defined as a performance criterion value greater than 

𝑦75(𝑥𝑠) + 1.5(𝑦75(𝑥𝑠) − 𝑦25(𝑥𝑠)). Effectiveness is thus defined as the improvement in the 

median performance of a design option as a ratio of the best possible increase. The robustness 

is similarly defined as the improvement in the performance spread of a design option as a ratio 

of the spread across all design options. According to these definitions, a measure with an 

effectiveness and robustness of one is the best possible case, while negative values should be 

avoided. The criteria are also illustrated in Figure 6.1. 
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Figure 6.1: Illustration of the effectiveness and robustness criteria. 𝒙 corresponds to the design 
option with the largest spread, while 𝒙𝒊 and 𝒙𝒋 are two random design options. 

The objective function is taken to be the weighted sum of the effectiveness and robustness 

criteria: 

)()( 21 npn xRwxw        (6.12) 

where 𝑤1 is the weight on the effectiveness criterion, and 𝑤2  is the weight on the robustness 

criterion. Therefore as with the risk-taking and risk-averse approach, a weighted-sum multi-

objective optimization approach is applied in order to take into account both the expected 

value and the associated risk. 

6.2.3 Optimization schemes 

Figure 6.2 summarizes the steps involved in carrying out the optimization of retrofitting 

dwellings under the context of uncertainties and variabilities in model inputs. There are 

several different ways of generating design options. There are also alternative approaches for 

sampling the variations in the model used to calculate the performance criterion. The model 

can also be replaced by a metamodel to reduce the computational running time, and enable a 

higher resolution of Monte Carlo analysis to be carried out. Three different combinations for 

generating the design options, sampling the model variations, and using a metamodel are 

explored here. 
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Figure 6.2: Steps involved in finding the optimal design option. 

6.2.3.1 Single-layered direct approach  

The parameter space of the design variables defining the design options is divided into an 

equally-spaced grid of multiple dimensions, where each grid space corresponds to a particular 

design option. The objective function is systematically evaluated for each grid space, sampling 

all variations simultaneously. The model is used directly rather than replacing it with a 

computationally faster but possibly less accurate surrogate model (see Chapter 5). The design 

option with the lowest objective function is defined as the optimal solution. 

6.2.3.2 Multi-layered sampling scheme 

The design parameter space can instead be explored using a sampling method such as the full 

factorial design. In the optimization scheme presented here, the sampling of design options is 

combined with a multi-layered sampling of the variations, according to their source. For 

example, there are variations associated with the dwelling stock and there are those 

associated with future economic scenarios, and by separating these variations, an assessment 

can be made as to whether the overall optimal design option is in fact the optimal design 

option in all economic situations. 

Therefore the sampling scheme is in fact a three-layered design, used to sample the 

uncontrollable variations associated with the dwellings and the uncontrollable variations 

associated with the future economic scenarios for each controllable design option. In the first 

layer, all potential design options are sampled. For every design option, the future economic 

scenarios are sampled in a second layer. The remaining uncertainties/variatiabilities are 

sampled in a third layer. Multi-adaptive regressions splines (MARS) are used to represent the 

model (Chapter 5). 

Generate design option.  

Generate performance criterion distribution associated 
with each design option by sampling 

uncertainties/variations in dwelling characteristics and 
future economic scenarios. 

Calculate objective function for each design option 
from the performance criterion distribution. 
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Figure 6.3: Three-layered sampling design, separating controllable variations in the design 
options (top layer) from uncontrollable variations in future economic scenarios (middle layer) 

and dwelling characteristics (bottom layer). 

6.2.3.3 Single-layered hybrid genetic algorithm 

This method uses the objective functions associated with previously sampled design options to 

help select the next design option, therefore only investigating part of the whole design 

parameter space in detail. The genetic algorithm initially randomly generates a population of 

chromosomes, each corresponding to a design option. The objective function is evaluated for 

each chromosome in the population. The new population for the next iteration is formed by 

randomly selecting multiple chromosomes from the current population, depending on their 

associated objective function, and recombining them with possible random mutations. The 

genetic algorithm is specified so that it stops once either a maximum number of generations 

has been reached or if the weighted average relative change in the minimum objective 

function value over a specified number of generations is less than or equal to some specified 

level of accuracy. The genetic algorithm is used to find the region containing the solution, and 

then the much more computationally efficient gradient-descent algorithm finds the precise 

solution. In the evaluation of the objective function, the variations are all sampled 

simultaneously. A neural network metamodel is used to represent the model. More details 

regarding this metamodel can be found in Chapter 5. 

 

6.2.4 Application to the renovation of attics  

Exploration of the various optimization formulations are carried out with regards to the 

renovation of attics in a neigbourhood of residential dwellings in Sweden, introduced in 
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section 1.3.6 of  Chapter 1. Each design option is a combination of one or more of the 

following renovation measures: 

1. Increasing the insulation level of the attic floor, i.e. reducing the 𝑈-value to a target 

value of 𝑈𝑐,𝑡𝑎𝑟𝑔𝑒𝑡. No lower limit is assumed to the 𝑈-value that can be achieved. 

2. Increasing the airtightness of the attic floor, i.e. reducing the effective leakage area of 

the attic floor to a target value of 𝐴𝑐,𝑡𝑎𝑟𝑔𝑒𝑡. The lowest achievable effective leakage 

area is considered to be 5 × 10−8 m²/m². 

3. Sealing the ventilation gaps at the eaves, i.e. reducing the venting area per metre eave 

to a target value of 𝐴𝑒,𝑡𝑎𝑟𝑔𝑒𝑡. The airtightness of the attic floor has a lower limit of 

2.5 × 10−5 m²/m. 

In this case ∆𝐾𝐸,𝑙 is defined as the change in the cumulated heat loss through the ceiling as a 

result of installing the selected design option. There are uncertainties with the installation of 

each renovation measure, and these along with their costs are shown in Table 6.1. Therefore 

the actual new dwelling characteristics will vary from the target dwelling characteristics. 

Table 6.1: Uncertainty in the implementation of energy efficiency interventions and their costs. 

Renovation 

measure 

Old 

value 

Target 

value 

Actual value Cost 

Increasing 

attic floor 

insulation 

𝑈𝑐,𝑜𝑙𝑑  𝑈𝑐,𝑡𝑎𝑟𝑔𝑒𝑡  𝑈𝑐,𝑛𝑒𝑤

=  𝑁(𝑈𝑐,𝑡𝑎𝑟𝑔𝑒𝑡 , 0.1𝑈𝑐,𝑡𝑎𝑟𝑔𝑒𝑡) 
8.0 + 1.2 (

1

𝑈𝑐,𝑛𝑒𝑤
 −  

1

𝑈𝑐,𝑜𝑙𝑑
)  

euro/m
2
 

Increasing 

airtightness 

of attic floor 

𝐴𝑐,𝑜𝑙𝑑  𝐴𝑐,𝑡𝑎𝑟𝑔𝑒𝑡  𝐴𝑐,𝑛𝑒𝑤

= 𝑁(𝐴𝑐,𝑡𝑎𝑟𝑔𝑒𝑡 , 0.2𝐴𝑐,𝑡𝑎𝑟𝑔𝑒𝑡) 

 

5.0 +
3×10−7

𝐴𝑐,𝑛𝑒𝑤
  euro/m

2
 

Sealing 

ventilation 

gaps at the 

eaves 

𝐴𝑒,𝑜𝑙𝑑  𝐴𝑒,𝑡𝑎𝑟𝑔𝑒𝑡  𝐴𝑒,𝑛𝑒𝑤  

=  𝑁(𝐴𝑒,𝑡𝑎𝑟𝑔𝑒𝑡 , 0.4𝐴𝑒,𝑡𝑎𝑟𝑔𝑒𝑡) 
12.0 +

3×10−4

𝐴𝑒,𝑛𝑒𝑤
 euro/m 

 

There is also uncertainty in the future economic scenario (Table 6.2) and a maintenance cost in 

case of mould damage. This is a one-off repair cost (58 euro/m2) in the case that the peak 

mould growth index (PMG) for the wooden underlay exceeds a value of 5 at least once within 

the 10 years since the initial retrofitting. No inflation-related corrections on the maintenance 

cost are taken into account. 
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Table 6.2: Uncertainty in future economic scenarios. 

Economic parameter Symbol Distribution 

Inflation-corrected 

present value factor 

a 𝑁(0.07,0.015) 

Inflation corrected 

annual increment in 

energy cost 

𝑟𝐸  𝑁(0.065,0.0175) 

 

The conditions in the attic are modelled using the Cold Attic model (or a metamodel surrogate) 

introduced in Chapter 1.  
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6.3 Evaluation of methods 

In this section, the impact of using different performance criteria, different definitions of the 

objective function, and a range of optimization schemes is demonstrated with the renovation 

of Swedish attics. The analysis is founded on the solutions for Common Exercise 5, seven of 

which were received, as contributed by Christoph Harreither (Vienna University of Technology, 

Austria), Liesje Van Gelder (KU Leuven, Belgium), Fitsum Tariku (British Columbia Institute of 

Technology, Canada), Simo Illomets (Talinn University of Technology, Estonia), Pär Johansson 

(Chalmers, Sweden), Payel Das (University College London, UK) and Mikael Salonvaara (Owens 

Corning, USA). The complete solutions are not included here, instead a synthesis is made of 

the findings and comments only.  

6.3.1 Impact of performance criterion 

The impact of the choice of performance criterion is illustrated using a single-layered direct 

approach and the full Cold Attic model, exploring 6 target U-values, 2 target values for the 

leakage area of the ceiling, and 2 target values for the venting area of the attic eaves. The 

parameters defining inflation and energy prices are assumed to be different year to year and 

between each of the dwellings. The objective function is defined as the expected value of the 

performance criterion. 

Table 6.3: Performance criteria for a range of design options. 

𝑼𝒄,𝒕𝒂𝒓𝒈𝒆𝒕 𝑨𝒄,𝒕𝒂𝒓𝒈𝒆𝒕 𝑨𝒆,𝒕𝒂𝒓𝒈𝒆𝒕  𝑬(𝑵𝑷𝑽) 𝑬(𝑹𝑶𝑰) 𝑬(𝑷𝑩) 𝑬(𝑰𝑹𝑹) 

W/m
2
/K m

2
/m

2
 m

2
/m €    

0.08 5.00E-06 0.01 1,695,711 2.44 2.27 0.28 

0.1 5.00E-06 0.01 1,789,123 2.87 1.87 0.33 

0.15 5.00E-06 0.01 1,854,729 3.49 1.35 0.42 

0.2 5.00E-06 0.01 1,804,170 3.78 1.23 0.44 

0.25 5.00E-06 0.01 1,768,982 4.03 1.01 0.49 

0.3 5.00E-06 0.01 1,690,626 4.07 1.00 0.49 

0.08 5.00E-06 0.02 1,632,186 2.39 2.48 0.26 

0.1 5.00E-06 0.02 1,737,192 2.79 2.02 0.31 

0.15 5.00E-06 0.02 1,853,331 3.49 1.35 0.42 

0.2 5.00E-06 0.02 1,801,427 3.78 1.23 0.44 

0.25 5.00E-06 0.02 1,730,261 3.91 1.18 0.45 

0.3 5.00E-06 0.02 1,684,408 4.06 1.00 0.49 

0.08 1.50E-05 0.01 1,028,104 1.37 4.48 0.13 
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0.1 1.50E-05 0.01 1,011,005 1.51 4.47 0.13 

0.15 1.50E-05 0.01 1,101,133 1.94 4.05 0.15 

0.2 1.50E-05 0.01 1,219,071 2.52 3.41 0.19 

0.25 1.50E-05 0.01 1,150,065 2.60 3.45 0.19 

0.3 1.50E-05 0.01 1,094,659 2.69 3.44 0.19 

0.08 1.50E-05 0.02 1,026 481 1.37 4.49 0.13 

0.1 1.50E-05 0.02 1,010,492 1.51 4.47 0.13 

0.15 1.50E-05 0.02 1,074,448 1.87 4.06 0.15 

0.2 1.50E-05 0.02 1,157,961 2.33 3.63 0.17 

0.25 1.50E-05 0.02 1,145,470 2.59 3.46 0.19 

0.3 1.50E-05 0.02 1,088,181 2.67 3.45 0.19 

 

Assuming 𝑁𝑃𝑉 as the performance criterion finds an optimal design option defined by the 

target variables [𝑈𝑐,𝑡𝑎𝑟𝑔𝑒𝑡, 𝐴𝑐,𝑡𝑎𝑟𝑔𝑒𝑡, 𝐴𝑒,𝑡𝑎𝑟𝑔𝑒𝑡] = [0.15, 0.5 × 10−5, 0.01] while the other 

performance criteria prefer [𝑈𝑐,𝑡𝑎𝑟𝑔𝑒𝑡, 𝐴𝑐,𝑡𝑎𝑟𝑔𝑒𝑡, 𝐴𝑒,𝑡𝑎𝑟𝑔𝑒𝑡]  = [0.3, 0.5 × 10−5, 0.01]. The other 

performance criteria are still increasing at 𝑈𝑐,𝑡𝑎𝑟𝑔𝑒𝑡 = 0.3 , and therefore this is a lower limit 

as the minimum point in the curve may not have yet been reached.  

6.3.2 Impact of objective function definition 
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Figure 6.4: The impact of 𝜽 (the weight on the dispersion of the 𝑵𝑷𝑽 distribution in the 
objective function) and the impact of 𝝁 (the weight on the probability of the 𝑵𝑷𝑽 being less 
than 0 in the objective function) on the total optimal profit for a stock of 237 dwellings (top), 

the optimal design 𝑼𝒄 (middle), and the optimal design 𝑨𝒄 (bottom). 

The impact of varying 𝜃 and 𝜇 in Equations (6.7-6.9) is illustrated using a single-layered hybrid 

genetic algorithm scheme and the neural network metamodel, and assuming the design option 

to be defined by [𝑈𝑐,𝑡𝑎𝑟𝑔𝑒𝑡 , 𝐴𝑐,𝑡𝑎𝑟𝑔𝑒𝑡] only, as 𝐴𝑒,𝑡𝑎𝑟𝑔𝑒𝑡 is found to have a small effect. 𝑁𝑃𝑉 is 

taken to be the performance criterion. Genetic algorithm parameters assumed include a 

population size of 15, a maximum number of generations of 100, and a crossover fraction 

between generations of 0.6. The parameters defining inflation and energy prices are assumed 

to be different year to year but not between each of the dwellings. 𝜃  is varied between -100 

and 100 and 𝜇 between 1 and 107.  

 

Figure 6.5: The NPV cumulative probability distribution  for 𝜽 = 𝟎 (left) and 𝜽 = −𝟏𝟎(right). 

The design option with the highest profit is found at 𝜃 = 0, as the only driving term in the 

optimization is the expected value of 𝑁𝑃𝑉. As 𝜃 → −∞, the profit associated with the optimal 

design option falls off very quickly as a large dispersion is favoured over a high expected value. 

Inspecting the 𝑁𝑃𝑉 cumulative probability distribution in more detail (Figure 6.5) shows that 

the risk-taker increases the probability of achieving a very high 𝑁𝑃𝑉 in select dwellings, even 

though the overall profit is compromised. The optimal 𝑈𝑐,𝑡𝑎𝑟𝑔𝑒𝑡 falls towards zero, and the 

optimal 𝐴𝑐,𝑡𝑎𝑟𝑔𝑒𝑡 increases. As 𝜃 → ∞, the profit associated with the optimal design option 

falls initially but then levels off as a small dispersion is increasingly favoured. This shows that 

there is a lower limit to the dispersion achievable, which can be reached with a relative weight 

of about 10 on dispersion, though it significantly reduces the total profit. The optimal 𝑈𝑐,𝑡𝑎𝑟𝑔𝑒𝑡 

increases as a lower dispersion is sought, and the optimal 𝐴𝑐,𝑡𝑎𝑟𝑔𝑒𝑡 also increases. 
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As 𝜇 → 0, the profit associated with the optimal design option falls off quickly as the 

probability of a positive 𝑁𝑃𝑉 throughout dominates over its expected value. Analyzing the 

𝑁𝑃𝑉 cumulative probability distribution in more detail shows that the risk-taker increases the 

probability of achieving a very high 𝑁𝑃𝑉 in select dwellings, even though the overall profit is 

compromised. The optimal 𝑈𝑐,𝑡𝑎𝑟𝑔𝑒𝑡 increases while the optimal 𝐴𝑐,𝑡𝑎𝑟𝑔𝑒𝑡  does not change 

much, therefore again showing that a higher 𝑈𝑐,𝑡𝑎𝑟𝑔𝑒𝑡 is a lower-risk approach.  

The impact of using the effectiveness and robustness criteria is demonstrated using the multi-

layered sampling scheme combined with the MARS metamodel, and assuming the design 

options are defined by all possible design variables [𝑈𝑐,𝑡𝑎𝑟𝑔𝑒𝑡 , 𝐴𝑐,𝑡𝑎𝑟𝑔𝑒𝑡 , 𝐴𝑒,𝑡𝑎𝑟𝑔𝑒𝑡]. 𝑁𝑃𝑉 is 

again taken to be the performance criterion. Different permutations of the objective function 

in Equation (6.12) are explored through a range of combinations of [𝑃, 𝑤1, 𝑤2], where 

𝑃 = [75,80,80,90,95,100], 𝑤1 = [1, 1.5, 2], and 𝑤2 = 1. A direct comparison is not possible 

with the objective function formalisms described earlier, but the trends found can be 

compared. Each of the design option variables in the first layer of Figure 6.3 are assigned ten 

levels, of which nine are uniformly selected, and one is the initial state. All thirty design 

variable values are then combined in a full factorial design, resulting in 1000 design options. 

The uncontrollable future economic scenario variables in the second layer and uncontrollable 

dwelling characteristics variables in the third layer are separately sampled in a replicated 

maximin design of 100 samples (5x20). The distributions in the second and third layers are 

combined to give the 𝑁𝑃𝑉 distribution for each design option, and combined for all the design 

options to given the total 𝑁𝑃𝑉 distribution. 

 

Figure 6.6: The trade-offs between robustness and effectiveness, assuming 95% of sample 
points are included in the robustness criteria calculation (𝑷).The red dots illustrate the Pareto 

front. 

Figure 6.6 shows the values of the robustness criteria versus the values of the effectiveness 

criteria for all design options before applying the weights, assuming 95% of sample points are 

included in the robustness criterion calculation in Equation (6.11). The most effective design 

option is given by [𝑈𝑐,𝑡𝑎𝑟𝑔𝑒𝑡, 𝐴𝑐,𝑡𝑎𝑟𝑔𝑒𝑡] = [0.2,7.02 × 10−6] and the most robust solution is 
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given by [𝑈𝑐,𝑡𝑎𝑟𝑔𝑒𝑡 , 𝐴𝑐,𝑡𝑎𝑟𝑔𝑒𝑡] = [0.2,9.01 × 10−6]. The design option given by 

[𝑈𝑐,𝑡𝑎𝑟𝑔𝑒𝑡 , 𝐴𝑐,𝑡𝑎𝑟𝑔𝑒𝑡] = [0.2,8.01 × 10−6] is the optimal design option for most weight factors 

and percentages of included data, as illustrated in Table 6.4. The optimal design options 

preferred no changes to be made to 𝐴𝑒 as was found in the application of the other 

optimization schemes. 

Table 6.4: Optimal design options for several variations of 𝑷 (percentage of included sample 
data), 𝒘𝟏 (the weight factor for 𝜺), and 𝒘𝟐 (the weight factor for 𝑹𝒑). 

𝑷 𝒘𝟏 𝒘𝟐 𝑼𝒄,𝒕𝒂𝒓𝒈𝒆𝒕 𝑨𝒄,𝒕𝒂𝒓𝒈𝒆𝒕 

75 1 1 0.2 9.01E-06 

80 1 1 0.2 9.01E-06 

90 1 1 0.2 8.01E-06 

95 1 1 0.2 8.01E-06 

100 1 1 0.3 9.01E-06 

75 1.5 1 0.2 8.01E-06 

80 1.5 1 0.2 8.01E-06 

90 1.5 1 0.2 8.01E-06 

95 1.5 1 0.2 8.01E-06 

100 1.5 1 0.2 7.02E-06 

75 2 1 0.2 8.01E-06 

80 2 1 0.2 8.01E-06 

90 2 1 0.2 8.01E-06 

95 2 1 0.2 8.01E-06 

100 2 1 0.2 7.02E-06 

 

6.3.3 Impact of optimization scheme 

The impact of the optimization scheme is illustrated in the case where the design option is 

defined by [𝑈𝑐,𝑡𝑎𝑟𝑔𝑒𝑡, 𝐴𝑐,𝑡𝑎𝑟𝑔𝑒𝑡] only, the performance criterion is taken to be  𝑁𝑃𝑉, and the 

objective function is taken to be the expected value of 𝑁𝑃𝑉. 
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 Figure 6.7: Optimal 𝑬(𝑵𝑷𝑽) (represented by colour) for different future economic scenarios. 

 

 

The direct approach using the Cold Attic model finds a maximum 𝐸(𝑁𝑃𝑉) of 2,063,955€, 

arising from the design option [𝑈𝑐,𝑡𝑎𝑟𝑔𝑒𝑡 , 𝐴𝑐,𝑡𝑎𝑟𝑔𝑒𝑡]  = [0.15,5 × 10−6]. The genetic algorithm 

using the neural network metamodel finds a maximum 𝐸(𝑁𝑃𝑉) of 1,950,472€ arising from the 

design option [𝑈𝑐,𝑡𝑎𝑟𝑔𝑒𝑡 , 𝐴𝑐,𝑡𝑎𝑟𝑔𝑒𝑡]  = [0.14,7.96 × 10−7]. The multi-layered sampling scheme 

using the MARS metamodel finds a maximum 𝐸(𝑁𝑃𝑉) of 2,155,600€ arising from the design 

option [𝑈𝑐,𝑡𝑎𝑟𝑔𝑒𝑡, 𝐴𝑐,𝑡𝑎𝑟𝑔𝑒𝑡]  = [0.2,7.01 × 10−6]. Therefore the schemes proposed find similar 

optimal values for 𝐸(𝑁𝑃𝑉). The various schemes all agree that the optimal scenarios prefer no 

change in 𝐴𝑒 of the dwellings in the housing stock, and the target 𝑈𝑐 and 𝐴𝑐for the dwellings in 

the stock are on the lower end of the spectrum, though they are not in exact agreement. 

The multi-layered sampling scheme also enables us to compare optimal solutions between 

different future economic scenarios (Figure 6.3). The optimal design options are all either 

[𝑈𝑐,𝑡𝑎𝑟𝑔𝑒𝑡 , 𝐴𝑐,𝑡𝑎𝑟𝑔𝑒𝑡]  = [0.2,7.01 × 10−6] or [𝑈𝑐,𝑡𝑎𝑟𝑔𝑒𝑡, 𝐴𝑐,𝑡𝑎𝑟𝑔𝑒𝑡]  = [0.1,4.03 × 10−6], which 

implies that the optimal solutions are robust against the uncertainty of the future economic 

scenario, though part of the lack of variation is attributable to the relatively coarse grid of 

design options explored. This however relates to a range of total profit of between ~1,500,00-

3,000,000€, with a high 𝑟 combined with a low 𝑎 leading to up to a factor of two discrepancy 

compared to a scenario with a low 𝑟 and high 𝑎. 
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6.4 Discussion and conclusions 

This Chapter proposes several alternatives for an optimization framework, with variations in 

the definition of the performance criterion, the derivation of a deterministic criterion from a 

performance criterion distribution, and the uncertain optimization scheme employed, drawing 

together several methodologies developed in earlier Chapters. 

𝑁𝑃𝑉 was found to give a different result compared to 𝑅𝑂𝐼, 𝐼𝑅𝑅 and 𝑃𝐵, as the latter are more 

closely coupled to the ratio between the initial investment and the future cash flow. This 

implies that it may be worth looking at more than one economic criterion in the assessment of 

retrofitting scenarios, and consider the most appropriate in each case. A mathematical analysis 

of the properties of the equations governing 𝑁𝑃𝑉 and 𝐼𝑅𝑅 (Osborne, 2010) found that results 

depend on the specification of the project and that problems arise in the case of 𝐼𝑅𝑅 when 

positive and negative cash flows are present in the same project. The author concluded that 

𝑁𝑃𝑉 is a richer concept than the 𝐼𝑅𝑅, in agreement with a study comparing 𝑁𝑃𝑉 with 𝐼𝑅𝑅, 

𝑃𝐵, amongst several other criteria (Pasqual et al., 2013). There are also other ways of defining 

the performance criterion that could be explored in further work. A life-cycle cost analysis 

would be an alternative economic performance criterion that calculates the total profit over 

the lifetime of the intervention. A non-economically driven approach could have used the 

energy savings and peak mould growth directly in a multi-objective optimization that aims to 

determine the Pareto optimal front in which an improvement in one objective cannot be 

achieved without compromising the other (Asadi et al., 2012b; Das et al., 2013). 

The objective functions formulations described here tried in some way to create an objective 

function that considers both the overall profit and risk associated with each design option in 

the case of the 𝜃 formulation and the robustness/effectiveness formulation. As lowering risk 

becomes more important, the optimal target U-value and leakage area of the ceiling increases 

in the former, and in the latter, the optimal target leakage area increases only, though this 

may be a resolution issue. Reducing the probability of 𝑁𝑃𝑉 < 1 directly does not appear to be 

significantly influenced by the target leakage area of the ceiling, but again is favoured by 

higher target U-values of the ceiling. The two formulations proposed here introduce weights 

that need to be selected, which could perhaps be informed by expert opinion, although 

weights are not required when only the Pareto-optimal front needs to be viewed. If the criteria 

do need to be combined, the robustness/effectiveness approach possibly unnecessarily 

introduces two weights, when only the relative weight is important. It has the advantage 

however of rating each design option’s ‘effectiveness’ or ‘robustness’ as a ratio of the 

effectiveness and robustness of all design options together, but this requires an additional 

parameter to be specified 𝑃. This parameter could perhaps just be replaced by a standard 

deviation.  

 

The proposed uncertain optimization schemes succeed in bringing together elements of the 

previous chapters by finding similar optimal design options. The main disadvantages and 
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advantages of the various schemes can be summarized as follows. Using the direct approach 

instead of a metamodelling approach avoids the problems with reproducing the peak mould 

growth, which is not as accurate as the metamodel for heat loss through the attic floor 

(Chapter 5), though it does not appear to have a big impact on the solutions found here. An 

obvious disadvantage of using the full model is the time required to run it, and therefore a lack 

of resolution in the sampling of variations and the exploration of the design space. The use of 

the genetic algorithm as opposed to the direct approach or sampling approach offers a very 

computationally efficient way of exploring the design space, therefore avoiding the issue of a 

high resolution of the design space. It cannot be used however in conjunction with the 

robustness and effectiveness criteria as they require a full exploration of the design space. 

Though the implementation of the multi-layered scheme essentially increases the number of 

simulations by a power of two, a lot more information is revealed concerning the performance 

of design options in different possible economic scenarios, which may be of interest to the 

decision maker.  

The main conclusions can be summarized as: 

 The optimal design options depend on the assumed economic criterion in the 

renovation of attics in Sweden. 𝑅𝑂𝐼, 𝐼𝑅𝑅, and 𝑃𝐵 give similar results however. 

 The optimal design options depend on the relative weighting between the total profit 

and risk. Risk can be assessed by looking at the standard deviation of the performance 

criterion distribution or the probability it has a value in an undesired range. 

Robustness and effectiveness criteria offer a method of combining total profit and risk 

by examining the maximum possible total profit and risk. 

 The genetic algorithm offers an efficient method for exploring the design space 

compared to a direct or sampling approach as the design options are only sampled in 

higher resolution close to the solution. 

 A multi-layered sampling scheme of the variations is able to provide useful information 

on how the optimal design options may vary across a second layer of variations such as 

those associated with future economic scenarios. 
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7.1 Quantification methodology 

7.1.1 Introduction 

Oberkampf and co-authors (2002) state that all “realistic modelling and simulation of complex 

systems must include the non-deterministic features of the system and the environment”.  The 

importance of identifying, characterising and disseminating the impact of uncertainty on analy-

ses or designs of complex systems is indeed progressively more appreciated (Helton and Bur-

master, 1996).  This essentially calls for the evaluation of probabilities, and hence for the appli-

cation of probabilistic techniques rather than deterministic methods.  Annex 55 therefore aims 

at introducing probabilistic approaches in analysis and design of hygrothermal building perfor-

mances.  This integration of probabilistic assessment comprises four parts: 1) a global probabi-

listic methodology (subtask 3), 2) a suite of probabilistic tools (subtask 2), 3) input with uncer-

tainty estimates (subtask 1), and 4) guidelines for probabilistic assessment (subtask 4). 

Specifically, the prime objective of Annex 55’s Subtask 2 is to appraise the advantages and dis-

advantages of existing probabilistic methods for qualitative and quantitative assessment with 

regard to their applicability within the particular context of building performance analysis and 

design.  Subtask 2 does hence not intend to develop new probabilistic tools, instead it aims at 

familiarising building physical engineers and researchers with the possibilities and limitations 

of existing probabilistic tools available from other fields.  Five sets of tools are needed for pro-

babilistic assessments, each with a distinct purpose: 

1. qualitative exploration: 

 to identify all relevant parameters, and the relations between them; 

2. uncertainty propagation: 

 to quantify the probabilistic character of the assessment’s outcome; 

3. sensitivity analysis:  

 to determine the dominant and the non-dominant input parameters; 

4. metamodelling method:  

 to formulate a simple surrogate model, to replace the original model; 

5. economic optimisation:  

 financial criteria and optimisation schemes to attain the best solution; 

These five tool sets have each been subject of a specific common exercise in Subtask 2, as well 

as having been the topic of a dedicated chapter in this report.  In these chapters, the outcomes 

of the common exercises have been used to assess the capabilities and limitations of the diffe-

rent available methods for each of the five tool sets.   

In this final chapter, all aspects are combined into a global quantification methodology.  Based 

on the final common exercise, the five primary sets of probabilistic tools are transformed into 

a generic flowchart, which should be generally applicable for probabilistic assessment of build-

ing performance.  This flowchart forms also the overall conclusion of this report, as it brings all 

previously discussed elements together.  It should be noted though that the given flowchart 

remains fairly simple, a more complete version is discussed in Van Gelder et al. (2014). 
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This global quantification methodology is illustrated for the CE5 idea, where a thermal retrofit 

of 237 roofs of a neighbourhood is to be designed (see Section 1.3.6 and Addendum 5).  To ar-

rive at the renovation measure with the highest overall profit, three main steps can be identi-

fied in the quantification methodology (see Figure 7.1): preprocessing, uncertainty quantifica-

tion, and final optimisation. These steps consecutively describe the problem, select an appro-

priate tool and the relevant input and output parameters (preprocessing), identify the key pa-

rameters (uncertainty quantification) and finally execute the actual probabilistic assessment 

(optimisation). 

7.1.2 Preprocessing 

In a first step a qualitative exploration identifies all possible renovation measures. For the case 

considered, two key mechanisms drive the heat flow from living spaces towards the attic: heat 

conduction through the attic floor and convective losses due to buoyancy and wind driven air 

pressure differences. Hence, two possible renovation measures can immediately be determin-

ed: adding attic floor insulation and/or increasing the air tightness of the attic floor. Since the 

magnitude of the losses is determined by the temperature differences between living spaces 

and attic, and assuming the comfort level in the living spaces fixed, increasing the attic tempe-

rature will also reduce the losses. This can be achieved by two additional renovation measures: 

increasing the roof insulation and/or reduce the ventilation rate of the attic by raising the air 

tightness of the roof and closing ventilation gaps of the eaves. 

Besides identifying all possible renovation measures, all possible hygrothermal risks have to be 

identified as well, as those might introduce (moisture) damage and additional costs. The major 

problem for thermal renovation of unheated attics in Sweden is the risk on mould growth on 

the wooden roof structure. Mould germination and growth is determined by temperature and 

relative humidity. All identified possible renovation measures (adding insulation or changing 

the airtightness both of the attic floor as well as of the roof itself) will change the temperature 

and relative humidity conditions in the attic and thus alter the boundary conditions for mould 

growth. If severe mould growth occurs this will be an economic loss as the damage has to be 

repaired, which can counterbalance the gains due to less energy consumption. 

Summarised, the qualitative exploration maps all possible renovation measures with the cor-

responding gains (less energy consumption) and losses (initial investments and repair of poten-

tial damage).  A flowchart can help to structure all possible scenarios and detect the relevant 

input and output parameters. Once those determined an appropriate numerical model has to 

be chosen, being able to quantify the output parameters as a function of the input parameters. 

For the current case a Matlab-model taking into account all heat, air and moisture flows be-

tween outdoor environment, living spaces and attic is chosen. The input parameters are deter-

mined as the geometry and current state of the building (air tightness, indoor air temperature 

and moisture supply,…) as well as the costs for the different renovation and repair measures, 

evolution of energy prices,…  As output the net present value over a time span of 10 years is 

taken. 
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Figure 7.1: Flowchart overall quantification methodology. 

7.1.3 Uncertainty quantification 

Once an appropriate model is chosen and all relevant input and output parameters determin-

ed, the uncertainty quantification can be performed. Note that, at this stage the input parame-

ters are determined, but sometimes the exact distribution is not (yet) known. In such cases, 

provisional distributions can be ascribed to the stochastic parameters, based on reasonable as-

sumptions.  For the current case, the uncertainty quantification, performed via a Monte Carlo 

loop, shows that the variabilities of the input parameters indeed strongly affect the predicted 

hygrothermal performances, via the spreads on heat loss and mould growth.  The obtained re-

sults are used for a sensitivity analysis. Sensitivity indices are calculated to rank the input para-

meters from most to least influencing the output distributions. Based on this sensitivity ran-

king, it can be decided whether provisional distributions of influencing parameters need to be 

updated, while less influencing input parameters can be omitted. 
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(un)controllable input parameters

Run Monte-Carlo loop
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(Build a meta-model)

UNCERTAINTY QUANTIFICATION
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As a lot of hygrothermal simulation models are time consuming, this is also the place to decide 

on replacing the original model with a metamodel (a faster surrogate model) before going to 

the actual probabilistic design and final optimisation. The runs used for the uncertainty propa-

gation can be used to construct and validate the metamodel. To do so, the sampling sets of the 

uncertainty quantification, which are run in the original model, can be subdivided in training 

and validation sets. Common Exercise 5 showed that for the predicted heat losses through the 

attic floor a simple regression function suffices to reliable predict the output variable as a func-

tion of the input variables, while for the mould growth more advanced metamodels are need-

ed. 

7.1.4 Final optimisation 

Before performing the final optimisation, it can be useful to subdivide the input parameters in-

to controllable and uncontrollable factors. For instance the renovation measures such as addi-

tional attic floor insulation or air tightness are controllable parameters. They are unknown pa-

rameters in the optimisation process, but can be seen as design parameters. Once a design is 

selected, these input values are known. Whereas inherently uncontrollable factors such as 

workmanship (and hence e.g. the finally obtained airtightness) are completely uncontrollable 

by the decision maker as their values are neither known in the design process nor after, but 

can notably affect the final performance. In the probabilistic design the conceptual meaning of 

the different input parameters can be taken into account by performing a multi-layered sam-

pling scheme. In a multi-layered sampling scheme all design options can e.g. be subjected to 

the same uncertain parameters, enabling a correct and direct comparison of the obtained out-

put distributions. Note that a further subdivision into more layers can be desirable. Van Gelder 

et al. (2014) for instance further distinguish an economic scenario layer, to check whether a 

design option is the most profitable for all future energy price evolutions. Since such a multi-la-

yered scheme will significantly increase the number of runs, this is an additional reason to re-

place the original model with a faster meta-model. 

 

Once the decision is taken on a one-, two- or multi-layered sampling scheme and all input dis-

tributions are known, the output distributions can be calculated in a Monte Carlo loop. To ob-

tain reliable results, all considered output indicators should converge. In a two-layered scheme 

typically a single design option is selected (e.g. designed U-value and airtightness of the attic 

floor) and the uncertainty layer values are run. Sampling sets in this layer are added until the 

output indicators reach convergence.  

Once all outputs calculated, each design option can be associated with a performance criterion 

distribution. Within Common Exercise 5 the cumulative distribution function of the net present 

value is taken as performance criterion, but other economic performance criteria can be ex-

plored as was shown in Chapter 6. Compared to a traditional deterministic analysis, the proba-

bilistic assessment of the design options, gives insight in the reliability of the obtained outcome 

(effectiveness and robustness of a design option can be evaluated) and the obtained distribu-

tion can be combined with an objective function, ranging e.g. from risk-averse to risk-taking to 

make the final decision. 
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7.1.5 Final thought 

This integrated quantification methodology provides the overall framework for the five sets of 

probabilistic tools that have been investigated in the different chapters of this report and in the 

different common exercises of the subtask, and it thus concludes the final report of Subtask 2. 

It should however ultimately be stated that the contents of this report on probabilistic tools is 

not exhaustive on all themes related to the topic. Examples of themes that have not been dealt 

are: 

 correlations between stochastic variables 

 multi-objective optimisation of designs 

 extreme-value analysis of problems 

 stochastic analysis of time-series 

 … 

amongst others.  More information on these elements can be found in the relevant literature. 
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Addendum 1 

Instruction document of Common Exercise 1: Hazard identification and flowchart formation for 

wall renovation measures 

Addendum 2 

Instruction document of Common Exercise 2: Hygrothermal analysis of massive wall with inte-

rior insulation 

Addendum 3 

Instruction document of Common Exercise 3: Sensitivity analysis of hygrothermal performance 

of cold attic 

Addendum 4 

Instruction document of Common Exercise 4: Metamodelling of the hygrothermal performan-

ce of cold attic 

Addendum 5 

Instruction document of Common Exercise 5: Economic assessment of retrofitting measures 



 

 
 
 
 

IEA-ANNEX 55 
 

Reliability of Energy Efficient Building Retrofitting –   
Probability Assessment of Performance and Cost  

(RAP-RETRO) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SUBTASK 2, COMMON EXERCISE 1 - INSTRUCTION DOCUMENT 
HANS JANSSEN  / STAF ROELS, NOVEMBER 2010 

 
 
 



ANNEX 55 RAP-RETRO 
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COMMON EXERCISE 1:  
HAZARD IDENTIFICATION AND FLOWCHART FORMATION  

FOR WALL RENOVATION MEASURES 
– INSTRUCTION DOCUMENT – 

Hans Janssen, Staf Roels, November 2010 

1. Objectives of Common Exercise 1 

Subtask 2 aims at the development of a probabilistic methodology to predict the energy savings of re-
trofitting measures while simultaneously assessing the risk of potential hygrothermal failure. In the final 
stage of the Annex it should be possible to apply this methodology in a generic way: e.g. to make deci-
sions on retrofitting measures for a typical building stock. In the current onset stage of the Annex, the 
aim is first to get familiar with probabilistic methodologies, to investigate the limits and possibilities of 
stochastic models for our specific problems, to investigate possible bottle necks to apply the methodo-
logy in the field of building physics, etc. 
While Common Exercise 2, which runs in parallel with Common Exercise 1, aims at exploring quantita-
tive tools, such as FORM/SORM or Monte Carlo, based on an analysis of interior insulation, Common 
Exercise 1 focuses on qualitative probabilistic tools on a larger scale.  The objective of Common Exer-
cise 1 is the qualitative analysis of different wall thermal upgrade measures, with respect to both ener-
gy consumption and hygrothermal damages.  This allows investigating the capabilities and limitations 
of different qualitative methods for probabilistic risk assessment. 

2. General description of the Exercise 

The studied object for Common Exercise 1 is the Danish Villa, one of the cases studied in Annex 55.  
More specifically, the thermal upgrade of the cavity walls of this dwelling is to be analysed.  The figure 
below shows (from left to right) the front façade of the villa, a vertical cut of the building, a magnifica-
tion of the façade and the cavity wall dimensions.  For this exercise, we will consider the villa as free-
standing, without any significant vegetation shielding it.  Further information can be found in the Case 
report and presentation, uploaded to the Common Exercise folder. 
Three main options exist for the thermal upgrade of these cavity walls: interior insulation, exterior insu-
lation or cavity filling.  Each of these options has a different potential efficiency for reduction in building 
energy consumption and a different potential risk for hygrothermal damages.  The overall objective of 
the Common Exercise 1 is to attain a flowchart for the probabilistic evaluation of the energy consump-
tion and hygrothermal damages.  This flowchart should logically connect all the potential influence fac-
tors to the final estimation of energy consumption and hygrothermal damages. 
 

     

Snit i gavl

      

Snit i gavl

    

Snit i gavl

 

Illustration: Danish villa, vertical cut, cavity wall detail, cavity wall dimensions. 

120       90      120  10 



3. Task specification for the Exercise 

3.1. Introduction 

The final aim of any comparative study is to assess the advantages and disadvantages of different op-
tions, to finally come to a choice that is assumed to yield an optimal balance.  For this case, a thermal 
upgrade for cavity walls, three choices are to be compared: interior insulation, exterior insulation, and 
cavity filling.  The main grounds for comparison are the reduction in energy consumption and the mini-
misation of hygrothermal damages.  This implies that distributions in energy consumption and hygro-
thermal damages are to be quantified, which requires a probabilistic assessment. 
In the Probabilistic Tools Workshop, an element of the Copenhagen Working Meeting, a global metho-
dology for probabilistic assessment was discussed and developed.  The result is a two-tier approach, 
with a qualitative and a quantitative component.  The qualitative analysis targets a ‘dissection’ of the 
problem, via a hazard identification phase and a flowchart formation phase.  In the hazard identificati-
on, the main aim is to identify all potential influence factors that may affect the final aims (energy con-
sumption and hygrothermal damages).  In the flowchart formation, the logical connections between the 
influence factors and the final aims are outlined.  Once this qualitative evaluation is finalised, the quan-
titative analysis aims at translating stochastic distributions of the influence factors to stochastic distri-
butions of the final aims.  More information on this can be found in the report on the Probabilistic Tools 
Workshop, uploaded to the Common Exercise folder.  This Common Exercise 1 focuses on the quali-
tative aspects, while Common Exercise 2 targets the quantitative issues. 
For each of the two phases within the qualitative analysis, several methodologies are available in lite-
rature.  Hazards can be identified with Preliminary Hazard Analysis, Failure Modes and Effect Analy-
sis, Hazard and Operability Studies, Risk Screening Sessions, ...  Flowcharts can be formed via Event 
Trees, Fault Trees, Cause-Consequence Charts, Bayesian Probabilistic Nets, ...  A short introduction 
to these can be found in the lecture notes of Michael Faber, particularly sections 4.6-4.7 and 10.1-10.5.  
The primary objective of this Common Exercise 1 is to assess the capabilities and limitations of those 
methods. 

3.2. Hazard identification 

Common Exercise participants are requested to apply a hazard identification method to the three pos-
sible wall thermal upgrade options, with reference to both energy consumption and hygrothermal da-
mages.  The final result of this assignment should be an overview of all possible influence factors that 
may affect the targeted reduction in energy consumption and minimisation of hygrothermal damages. 

3.3. Flowchart formation 

Common Exercise participants are requested to apply a flowchart formation method to the derived set 
of influence factors.  The final result of this assignment should be a logical flowchart that illustrates the 
logical connections between the initial influence factors and the concluding final aims. 

4. Requested output of the Exercise 

Common Exercise participants are requested to deliver three main outcomes: 
1. an overview of the influencing factors resulting from the hazard identification assignment; 
2. one (or several) logical flowchart(s) resulting from the flowchart formation assignment; 
3. a report describing the methodologies that were applied, and commenting on their capabilities 

and limitations; 
We are aware that full execution of Common Exercise 1 may require significant effort, and that the re-
sults may quickly become extensive.  Partial analysis of the problem, along the suggested lines, is the-
refore also possible as output from the Common Exercise. 
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COMMON EXERCISE 2: HYGROTHERMAL ANALYSIS OF 

MASSIVE WALL WITH INTERIOR INSULATION 
– INSTRUCTION DOCUMENT – 

Hans Janssen, Staf Roels, November 2010 

1. Objectives of Common Exercise 2 
Subtask 2 aims at the development of a probabilistic methodology to predict the energy savings of 
retrofitting measures while simultaneously assessing the risk of potential hygrothermal failure. In the 
final stage of the Annex it should be possible to apply this methodology in a generic way: e.g. to make 
decisions on retrofitting measures for a typical building stock. In the current onset stage of the Annex, 
the aim is first to get familiar with probabilistic methodologies, to investigate the limits and possibilities 
of stochastic models for our specific problems, to investigate possible bottle necks to apply the 
methodology in the field of building physics, etc. 
Two common exercises (CE) are described in this onset stage. While CE1, which runs in parallel with 
this CE2, aims at an exploration of qualitative probabilistic tools such as fault tree analysis, bayesian 
networks,… CE2 focuses on quantitative probabilistic tools applicable on a smaller scale.  
The subject of CE2 is the probabilistic prediction of energy savings and hygrothermal risk for a specific 
retrofitting measure at the building component level: the application of interior insulation on an existing 
massive wall. This allows investigating the capabilities and limitations of different stochastic 
methodologies for a well-described one-dimensional HAM-problem (HAM: Heat Air and Moisture). As 
most probably different building envelope models will be used to assess the problem, first the 
deterministic case has to be calculated. This should give insight in deviations occurring from 
differences in the applied numerical models. Then prescribed stochastic variations are given for some 
of the material properties and boundary conditions. The applied probabilistic methodology to take into 
account these stochastic variations is free. In this way, a comparison of the obtained probability 
density functions of the requested performances in addition with information of the applied probabilistic 
tool, calculation time, etc. should give information on possibilities and limitations of different 
probabilistic tools in the field of HAM-analysis of building components. 

2. General description of the case 
To keep the hygrothermal simulations one-dimensional a simplified version of the outer walls of the 
‘Danish villa’- case have been used as starting point. As retrofitting measure the outer brick layer 
(uniform layer of 29 cm thick) is foreseen from interior insulation (6 cm) and finished at the inside with 
coated gypsum board.  The wall is assumed to be perfectly airtight and is submitted to transient indoor 
and outdoor conditions. 
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3. Input parameters 

3.1. Material properties 

This section gives an overview of all necessary material properties of the different layers.  First the 
material properties to be used in the deterministic case are described, then for each material an 
overview is given of those properties that have to be treated as stochastic variables with the 
prescribed distribution of the properties which are to be taken into account. 
 
3.1.1. Coated gypsum board 

The properties of the coated gypsum board are based on the round robin test performed within 
ST2 of IEA-Annex 41. For the current exercise the gypsum board has to be treated as one 
homogeneous layer with the following equivalent material properties: 
 
Heat capacity of dry material: 

 
ρ.c = 690*1100 J/(m³.K) 

 
Thermal conductivity: 

 
λ= 0.198 W/(m.K) 

 
Sorption isotherm: 
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with µdry = 300 

 
Liquid moisture permeability: 

 
Kl(pc)= 0 
 

In the stochastic analysis only the vapour diffusion of the coated gypsum board layer is 
treated as stochastic variable with the following distribution: 
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with var a normal distributed multiplication factor with mean value of 1.0 and 
stdev of 0.25. 
 

3.1.2. Interior insulation 
Mineral wool fibre is used as interior insulation with the following properties: 
 
Heat capacity of dry material: 

 
ρ.c = 50*840 J/(m³.K) 

 
Thermal conductivity: 

 
λ= 0.04 W/(m.K) 

 
 
 



Sorption isotherm: 
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with µdry = 1.2 

 
Liquid moisture permeability: 

 
Kl(pc)= 0 

 
In the stochastic analysis only the thermal conductivity of the mineral wool is treated as 
stochastic variable corresponding to a normal distribution with mean value mean = 0.04 
W/mK and stdev of 0.005. 
 
 

3.1.3. Masonry wall 
The original masonry wall is simplified into a single homogeneous brick layer with the following 
equivalent properties: 
 
Heat capacity of dry material: 

 
ρ.c = 1786*840 J/(m³.K) 

 
Thermal conductivity: 

 
λ= 0.5+0.0045*w W/(m.K) 

 
Sorption isotherm – water retention curve: 
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   with  sn =2 
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     n1=5.10; n2=2.677 
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with µdry = 13.8 
 
Liquid moisture permeability: 

 
The liquid water permeability is given as data-file (perm.txt) containing two columns: 
log(Psuc) and log(Kl). Intermediate values have to be calculated via logarithmic 
interpolation. For those numerical codes using a diffusivity-approach, the same data is 
provided in ‘diff.txt’ as moisture diffusivity Dw as a function of moisture content w.  

 
None of the properties of the brick wall are taken as stochastic variables. 



3.2. Boundary conditions 

3.2.1. Outside climate and exterior properties 
The outside conditions are based on the hourly values of the climatic data file of Essen, which 
can be found in the data file: Essbasi01h.cli. 
 
Driving rain is modelled according to the British Standard, using the following relation: 
 
  Rwdr = α*U*Rh*cos(ξ) kg/m2h 
 
with Rwdr the wind-driven rain (kg/m2h), α the wind-driven rain coefficient (s/m), U the meteorolo-
gical wind speed (m/s), Rh the horizontal rain (kg/m2h) and ξ the angle between the wind directi-
on and the normal to the wall (-).  For this exercise, α is taken equal to 0.1 s/m. 
The convective heat transfer coefficient at the exterior surface is taken constant at 20 W/m2K, 
the moisture transfer coefficient at 1.54*10-7 s/m, the short-wave absorptivity 0.6 and the long-
wave emissivity 0.9. 
 
For the deterministic case it is assumed that the wall is facing the south direction.  
 
For the stochastic case it is assumed that the wall can be orientated in all possible 
directions, equally distributed. 
 

3.2.2. Indoor climate and interior properties 
The indoor temperature is assumed to be constant at 20°C. The total heat transfer coefficient at 
the interior surface is 8 W/m2K, the moisture transfer coefficient 3*10-8 s/m. 
The indoor relative humidity is dependent on the outdoor vapour pressure, moisture production 
rate inside the dwelling and ventilation rate imposed by the inhabitants. The vapour over 
pressure Δpv,i-e indoor versus outdoor is based on the moisture balance of the dwelling and has 
to be calculated as: 
 
 Δpv,i-e = 3600*Rv*Ti*Gv/(n*V) 
 
with Rv the water vapour gas constant (462 J/kg.K), Ti the indoor temperature (293 K), Gv/V the 
moisture production rate divided by the volume of the dwelling; taken constant as 3.86*10-7 
kg/(s.m³) and n the ventilation rate per hour (1/h) which is dependent of the outside temperature 
θe (°C): 
 
 n = a*(0.45 + θe/30) 
 
For the deterministic case a is taken 1.0.  
 
In the stochastic case a is taken as variable, corresponding to a normal distribution with 
mean amean=1.0 and stdev 0.15.  

3.3. Initial conditions 

All layers are assumed to be initially at a temperature of 20°C and in equilibrium with 50% RH. 

4. Performances to be analysed 

The hygrothermal response of the wall is to be calculated from July 1st until June 30th.  To evaluate the 
performance of the wall both the heat losses through the wall and the risk on mould growth are to be 
analysed.   

4.1. Heat flux through the wall 

To evaluate the thermal performance of the wall the heat losses during January are calculated at the 
interior surface.  
To compare the deterministic cases the evolution of the heat losses through the wall during the month 
of January are to be given as a function of time in W/m². The hourly values of the heat flux at the 



interior surface have to be filled out in the sheet ‘determinstic_heat’ of the prescribed excel-file (see 
§5. Requested output).  
For the stochastic analysis, the same data (hourly values during January in W/m²) have to be 
provided, but now for each simulation run in the sheet ‘stochastic_heat of the prescribed excel-file. At 
the same time, for each run also the values of the stochastic variables are requested. 
 

4.2. Risk on mould growth 

The risk on mould growth is evaluated at the interface between interior insulation and masonry wall. 
The analysis is based on a simplified mould growth model.  The simplified model is derived from the 
VTT mould model, but only preserves the main characteristics.  The key simplifications are situated in 
neglecting the retarded growth in the initial and final stages (for mould indices below 1 and above 5). 
The mould growth index is indicated by M (-), and the evolution of M is modelled as: 
 if ( > crit):   dM/dt = (8*10-8 + 2*10-8·θ)*exp(12.5*) 
 if ( ≤ crit):  dM/dt = -0.015 
with  the relative humidity (-), crit the critical relative humidity (-), t the time (days) and θ the 
temperature (°C).  The given relations can be used on a basis of hours, minutes or seconds, but such 
requires dividing the given dM/dt with 24, 1440 or 86400.  The critical relative humidity is calculated 
as: 
 crit = max(0.8, (-0.00267*θ3 + 0.16*θ2 - 3.13*θ + 100)/100) 
 
As for the heat flux, the evolution of the mould growth index (M) has to be given as a function of time 
(daily values from July 1st, until June 30). The daily values have to be filled out in the sheet 
‘deterministic_mould’ of the prescribed excel-file. 
For the stochastic analysis, the same data (daily values of mould growth index), but now for each 
simulation run has to be filled out in the sheet ‘stochastic_mould’ of the prescribed excel-file. For each 
run also the values of the stochastic variables have to be given. 

5. Requested output 
Common Exercise participants are requested to deliver two documents: 

1. an excel-file corresponding the prepared ST2_CE2_country_institute.xls containing the 
numerical output of both the deterministic and stochastic analysis. Note that the given excel-
file ST2_CE2_country_institute.xls has to be renamed with the real name of the country and 
institute of the participant as e.g. ST2_CE2_Belgium_KUL.xls 

2. In addition each participant shall provide a word-document (ST2_CE2_country_institute.doc) 
describing shortly the used HAM-model and giving explanation on the applied stochastic 
methodology. How are the variables taken into account, are simplifications introduced, number 
of runs for Monte Carlo-simulations, etc. 
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1. Objectives of Common Exercise 3 
Annex 55’s Subtask 2 ‘Probabilistic tools’ aims at developing a probabilistic methodology to predict the 
energy savings of retrofitting measures while concurrently assessing the risk of potential hygrothermal 
failure. In the final stage of the Annex it should be possible to apply this methodology in a generic way, 
e.g. to make decisions on retrofitting measures for a typical building stock. In the current onset stage 
of the Annex, the target is first to get familiar with probabilistic methodologies, to investigate the limits 
and possibilities of stochastic models for our specific problems, to investigate possible bottle necks to 
apply the methodology in the field of building physics, etc.  Two common exercises (CE) have already 
been executed in Subtask 2: CE1 aimed at exploring qualitative probabilistic tools like fault tree ana-
lysis, bayesian networks …, while CE2 focused on applying quantitative probabilistic tools for the cha-
racterisation of uncertainty. 
The topic of CE3 is an uncertainty and sensitivity analysis of the hygrothermal behaviour of cold attics, 
particularly the mould growth in the attic and the heat loss to the attic.  Uncertainty analysis is a crucial 
step in any probabilistic assessment, as it characterises the effects of the variability of the input para-
meters on the simulation outcomes.  Sensitivity analysis equally is an essential element, since it allows 
determining which parameters actually govern the investigated outcomes, to certainly be considered in 
a later metamodelling exercise for example.  The main aims of Common Exercise 3 are hence to rein-
troduce methods for uncertainty analysis, and to explore approaches for sensitivity analysis.  The choi-
ce of methods is free for both aspects, and CE 3 hence generally targets an overview of different me-
thods and a comparison of their outcomes. 
 

2. General description of the Exercise 
Opposite to our earlier common exercises, a common calculation object and tool is used to avoid inter-
ference from deviations in modelling and/or simulation approaches.  The given cold attic model relates 
the cold attic performances to 16 different input parameters, each with its specific distribution.  In a first 
part, resulting uncertainties on mould growth and heat losses are to be quantified.  The (relative) signi-
ficances of the various input parameters for the performances are to be computed in the second part.   
An overview of uncertainty analysis techniques has been given at the Copenhagen working meeting, 
and participants are referred to the presentations from that meeting.  Inspiration for sensitivity analysis 
methodologies can be found in: 

 Lomas KJ, Eppel H, 1992. Sensitivity analysis techniques for building thermal simulation pro-
grams, Energy and Buildings 19, 21-44; 

 Hamby DM, 1994. A review of techniques for parameter sensitivity analysis of environmental 
models, Environmental Monitoring and Assessment 32, 132-154; 

 Hamby DM, 1995. A comparison of sensitivity analysis techniques, Health Physics 68, 194-
204; 

 Helton JC, Davis FJ, 2002. Illustration of sampling-based methods for uncertainty and sensiti-
vity analysis, Risk Analysis 22, 591-622; 

 Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S, 
2008. Global Sensitivity Analysis: The Primer, John Wiley and Sons, West Sussex, England; 

The first four publications are provided together with this common exercise. 



An introduction to the physical basis of the cold attic model used for this exercise is given in ‘Simulati-
on model for hygrothermal conditions and mould growth potential in cold attics’, which can be found at 
the end of this document.  That physical model has been implemented in Matlab, and Cold_Attic_4.m 
is provided.  The model uses 15 different input parameters – material properties, component characte-
ristics, geometric dimensions, climate values – to compute 2 outcomes – the yearly peak mould growth 
index (PMG, -) for the wooden underlay, and the cumulated heat loss through the ceiling in January 
(CHL, kWh/m2).  For detailed analyses, hourly values of the surface temperature and surface relative 
humidity of the wooden underlay, mould growth index on the wooden underlay and the ceiling heat 
losses are also provided by the program. 
The 15 different input parameters are collected in Table 1.  Table 1 equally gives the related symbol in 
the .m-file, and the probability distribution of each parameter.  Two types of distributions are used: uni-
form distributions U(xlow,xupp), and normal distributions N(xavg,xstd).  In the former, xlow and xupp indicate 
respectively the lower and upper limit of the uniform distribution; in the latter, xavg and xstd indicate the 
average and standard deviation respectively of the normal distribution.  For all normally distributed pa-
rameters, a lower limit of 0 is moreover implicitly assumed.  For the external climate data, 30 years are 
provided, of which one year is selected for a single simulation.  This particular uniform distribution is 
hence restricted to the integers between 1 and 30 only. 
 

Table 1: variable input parameters, .m-file symbol, probability distribution 

input parameter symbol distribution 
Height of building H (m) H U(4,8) 
Area of ceiling and roof A (assumed equal) (m2) Area U(50,200) 
Orientation of one of eave sides (-) BSangle U(0,180) 
Venting area per meter eave Ae (m

2/m) Ae U(0.001,0.05) 
Length of building (eave side) L (m) Length U(7,20) 
Thickness of wooden underlay d (m) d U(0.010,0.020) 
Vapour diffusivity of wood δv (m

2/s) deltav N(10-6,2 10-7) 
Initial relative humidity of wood φ0 (-) startRH U(0.5,0.9) 
Thermal conductivity of wood λroof (W/mK) lambda N(0.13,0.02) 
Resistance of roof insulation Rr (m

2K/W) Rr U(0,1) 
Leakage area per m2 of ceiling Ac (m

2/m2)  Ac U(0.001,0.05) 
U-value of the ceiling Uc (W/m2K) Ufloor U(1,5) 
Indoor temperature Ti (ºC) Ti N(20,1.5) 
Indoor moisture supply (kg/m3) MS N(0.005,0.002) 
Year of climate data used (-) Year U(1,30)* 

             *only discrete integer values are allowed 
 

3. Task specification for the Exercise 

3.1 Deterministic result 

As an introductory step, participants are requested to provide the resulting PMG and CHL values when 
all input parameters are taken equal to their respective means, and year 5 is imposed as fixed external 
climate data.  The results are to be provided in the predefined .xls-file. 

3.2 Uncertainty analysis 

Participants are requested to analyse the spread on PMG and CHL resulting from the variability of the 
different input parameters.  If Monte Carlo is employed to this aim, results to be provided are input pa-
rameters and simulation outcomes for all runs, inserted into the predefined .xls-file.  These will later on 
be compiled into cumulative probability distributions. If alternative uncertainty quantification techniques 
are applied, results should be inserted in the predefined .xls-file directly as a cumulative probability dis-
tributions.  A short text in the predefined .doc-file should document the general details from the Monte 
Carlo analysis (number of runs, sampling strategy, stopping criterion, ...).  If alternative uncertainty 
quantification techniques are applied, the short text should generally describe that approach. 
 
 
 



3.2.1 Fixed external climate 

In a first variant, the external climate data are fixed, and year 5 is used for all simulations. 
 
3.2.2 Variable external climate 

In the second variant, the variability of the external climate data is superimposed on the other 14 varia-
ble input parameters, with the year to be selected based on the U(1,30) distribution. 
 

3.3 Sensitivity analysis 

Participants are requested to quantify the (relative) significances of the different variable input parame-
ters on the simulation outcomes PMG and CHL.  The result of this sensitivity analysis is to be expres-
sed in a numeric format, which can later on be used to rank the parameters according to the sensitivity 
of PMG/CHL upon them.  Moreover, a short text documenting the applied sensitivity analysis techni-
que(s) is to be supplied as well.   
 
3.3.1 Fixed external climate 

In a first variant, the external climate data are fixed, and year 5 is used for all simulations. 
 
3.3.2 Variable external climate 

In the second variant, the variability of the external climate data is superimposed on the other 14 varia-
ble input parameters, with the year to be selected based on the U(1,30) distribution. 

4. Requested output of the exercise 
Common Exercise 3 participants are requested to deliver two documents: 

1. a .xls-file corresponding to the predefined ST2_CE3_country_institute.xls, containing the nu-
merical output of both the deterministic,  the uncertainty and the sensitivity analysis.  

2. additionally, a .doc-file corresponding to the predefined ST2_CE2_country_institute.doc, short-
ly describing the used uncertainty and sensitivity analsysis methods; 

Note that the given ST2_CE2_country_institute.xls and ST2_CE2_country_institute.doc have to be re-
named to the participant’s actual country and institute name, as e.g. ST2_CE3_Belgium_KUL.xls.  The 
two files are to be sent to Hans Janssen: haj@byg.dtu.dk.  Deadline for submission of your results is 
September 30 2011. 
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1 INTRODUCTION 
 
Problems with high humidity levels in cold attics have been remarkably increasing in Sweden over the 
last decade. Beside clear evidence – the significant mould growth on the wooden parts of cold attics, 
which is recently confirmed in about 60-80 % single-family houses in Västra Götaland region (largely 
the Gothenburg region; Ahrnens C & Borglund E, 2007.), mould odours in indoor air seem to be one of 
the most frequent side effects. Thus, cold attics are together with crawl spaces singled out as the two 
worst constructions in existing Swedish buildings with large existing and future mould problems.  
The high humidity levels are to a large extent a consequence of the increasing demand on energy 
efficiency. Houses are frequently retrofitted with additional attic insulation, which leads to a colder attic 
space and hence a higher humidity (Hagentoft 2008). Leaks of indoor air up to the attic through the 
attic floor, and the under cooling of the roof due to sky radiation, increase the problem (Holm and 
Lengsfeld 2006, Sanders et. al 2006, Essah et. al 2009). The moist air might condensate at the underlay 
and small droplets of liquid water can build up. The water will then be absorbed and accumulated in the 
surface area. High moisture content can even lead to rot.  
Another important moisture source influencing the attic hygrothermal condition is the water vapour in 
the surrounding outdoor air. The advice given to the building sector in Sweden today is to have a not 
too high or not too low ventilation rate, by outdoor air, of the attic. A too high ventilation rate, in 
combination with under cooling, results in high relative humidity (Sasic 2004). Too low ventilation is also 
risky in case of construction damp or leaky attic floor (Arfvidsson and Harderup 2005, Sanders 2006, 
Essah 2009). The optimal air exchange rate varies with the outdoor climate, and fixed ventilation 
through open eaves and/or gable and ridge vents are not always the best choice (Hagentoft et. al 2008, 
2010).  
 
 
2 THERMAL MODEL OF ATTIC 
 
In the modelled attic the roof underlay consists of wooden boards with a water and moisture tight 
membrane facing the exterior. The attic floor is thermally insulated with varying airtightness towards 
the living space underneath. 
 
The attic is ventilated through openings at the gables. The model assumes a common resultant attic air 
temperature. The heat capacity is located in the roof underlay; i.e. the remaining heat capacity of 
materials in the attic is neglected. The attic temperature is determined by the heat exchange with the 
outdoor air through ventilation and indoor air through air leakage and heat transmission through the attic 
floor. The temperature, T, of the underlay is determined by the heat exchange with the attic air 
temperature, the exterior equivalent temperature and the heat storage by the material itself. In this 
simple model differences due to the two different oriented sides of the roof are neglected. Basically 
this corresponds to a low sloped roof. 
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Indoor temperature is Ti, the exterior temperature Te and the equivalent temperature for the roof is Teq.  
Using thermal conductances K (W/K), the following ordinary differential equation can be found for the 
wooden roof underlay temperature: 
 

( ) ( ) e
eqresres KTTKTT

dt
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Figure 1. Thermal network of attic using thermal conductances K (with the unit W/K) and a node 
representing the heat capacity (J/K) of the wooden roof underlay. The second and third network 

(down left) shows reduced networks.  
 
Here, d (m) represents the thickness of the wooden roof underlay layer, ρc (J/m3K) the volumetric 
heat capacity of wood, and A (m2) is the total roof surface area. Reduction of two serial coupled 
conductances gives (Hagentoft 2001): 
 

roofresres KKK /1/1'/1 +=  (3) 

 
The conductances (W/K) are given by the following expressions: 
 

roofsi
roof

roofrseroofrrc

e

i
apaa

i
v

e
apaa

e
v

floorfloor

dR
AK

dRR
A

dR
AK

RcKRcK

UAK

λλλαα

ρρ

/2//2//2/)/(1 +
=

++
=

+++
=

⋅=⋅=

⋅=

 (4) 

 
Here, Ra refers to the ventilation flow rate (m3/s) and the indices refer to if it is air from the exterior, e, 
or the interior, i (air leakage from the room below). The volumetric heat capacity of air, at constant 
pressure, is denoted ρacpa (J/m3K). The thermal conductivity of wood is denoted λroof (W/mK). The 
heat transfer coefficients for long wave radiation and convection are denoted αr and αc (W/m2K) 
respectively. The total surface resistances at the interior and exterior side of the roof are denoted Rsi 
and Rse   (m

2K/W) respectively. 
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The wind will generate the ventilation of the attic. The wind speed used in the calculations is: 
 

2.052.00 ==⋅⋅= kawHaw k  (5) 

 
Here w0 is the wind speed registered at the meteorological station and H is the actual height of the 
considered building. Since we will consider a rather flat roof, this height will also be used later for the 
stack effect. 
 
The air pressure at two opposite eaves of the attic is: 
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Here, the density of the air ρa will be considered to be constant 1.245 kg/m3. The shape factors Cw (-) 
for an average urban-rural surrounding are given by the vector: 
 
[0.2750   -0.3500   -0.5500   -0.3500   -0.4500   -0.3500   -0.5500   -0.3500    0.2750    
-0.3500   -0.5500   -0.3500   -0.4500   -0.3500   -0.5500   -0.3500    0.2750] 
 
For the angle of (in degrees): 
[-360        -315       -270        -225      -180       -135         -90           -45          0  
   45         90           135         180        225         270       315         360] 
The wind direction equal to 0 corresponds to wind from North (90º East 180º  South 270º  West).  
For a rectangular building orientation the orientation, φbuilding surface =0 º corresponds to a South 
facing wall, -90º  for a East facing wall and +90º for a West facing one. The pressure becomes: 
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For a building where the eaves are facing west and east and the wind is coming from East the 
pressure at the eaves become: 
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Using mass conservation (assuming constant density of the air) the air pressure in the attic will 
become: 

2
21 PPPattic

+
=  (9) 

The ventilation rate of outdoor air becomes: 
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Here, L (m) is the length of the building as well as the length of one eave side and we have used 
Dicks’ formula were Ae (m

2/m) represents an effective leakage area per meter eave ventilation. For a 
typical Swedish cold attic eaves ventilation gap we have approximately Ae =0.026 m2/m i.e. a 
rectangular whole with the width of 0.026 m (and length of 1 m). 
 
For the leakage of indoor air up to the attic we will assume a building envelope with evenly distributed 
leakages and a shape factor Cwi. The wind generated indoor pressure becomes: 

3.0
2

2

−== wi
a

wii CwCP ρ
 (11) 

The stack effect gives an overpressure at the height of the ceiling. Assuming the neutral layer to be in 
the middle of the building it becomes: 
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The air leakage from the interior up to the attic becomes: 
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Here, Ac (m

2) represents an effective leakage area of the ceiling. 
Rewriting (3) we get: 
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This general way of writing the differential equation will be handy when using our mathematical solver. 
 
The attic air temperature is given by: 
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The underlay surface temperature is: 
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The external equivalent temperature is determined by the exterior air temperature, Te, the global solar 
radiation, Ig (W/m2) and the long wave radiation, Ilw (W/m2). 
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Here, Tr represents the apparent sky temperature, and σ is the Stefan-Boltzmann constant. The solar 
absorptance of the roof surface is denoted αsol. 
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4 MOISTURE MODEL OF ATTIC 
 
The moisture model assumes that the whole moisture storage capacity of the roof is within the roof 
underlay material and that the roof surface is perfectly moisture tight. The diffusion of moisture through 
the attic floor is neglected. The only way for moisture to come in to the attic is by ventilation and air 
leakages. 
 
The mass balance of the underlay, assuming no condensation at the roof underlay surface, gives:  
 

vK
RR

RvK
RR

RvKv
RR

RvRvKvvK
dt

dM v
rese

a
i
a

e
aev

rese
a

i
a

i
aiv

rese
a

i
a

e
ae

i
aiv

resres
v
res ⋅−

+
⋅

⋅+
+
⋅

⋅=







−

+
⋅+⋅

=−= )(  (18) 

Here, M (kg), is the total moisture weight of the roof underlay and, v (kg/m3), is its humidity by volume.  
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Here, Z (s/m), is the vapour resistance between the air and the centre of the underlay layer and δv 
(m2/s) is the vapour permeability of wood. The interior and exterior humidity by volume are denoted  vi 
and ve (kg/m3) respectively. 

 

 
Figure 2. Moisture network of attic using vapour transfer conductances (with the unit m3/s) and a 

node representing the moisture capacity of the wooden roof underlay. The second and third ones show 
reduced networks.  

 
 
For the case of condensation we get: 
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Here, vsat, denotes the humidity at saturation. We assume that the condensed water on the surface of 
the underlay is absorbed by the layer. Assuming a known slope, ξ(φ) (-),  of the sorption isotherm w(φ) 
(kg/m3) we can write: 
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==  (21) 

Combining it with (12) and using the definition of relative humidity we have for the case with no 
condensation: 
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, and with condensation: 
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The exterior humidity by volume, ve, is obtained from weather data. The interior one comes from: 
vvv ei ∆+=  (24) 

Here, the second term represents the indoor moisture supply (kg/m3), which will be a random variable: 
),( vvNv ∆∆=∆ σµ  (25) 

These random numbers are limited to the minimum physically realistically values. 
 
 
5. MOULD GROWTH MODEL 
 
A fundamental uncertainty lies in how to evaluate the calculations for the temperature and the relative 
humidity. What we really want to do is to estimate the probability or risk for mould growth in the attic. 
There are several studies on this subject. However, there is no standardized or widely accepted method 
for the evaluation of the mould growth risk. Here, we will base the risk assessment on the method de-
veloped by (Hukka, Viitanen,1999) to calculate the mould growth index which varies between 0 and 6. 
 
 
6. INPUT DATA 
 

Height of building H (m)  
To be varied: 

Area of ceiling floor and roof A (m
2)    

 

surfacebuildingϕ   Building surface angle for one of the eave sides  (0-180º) 

Effective leakage area per meter eave ventilation Ae (m
2/m) 

Length of building (eave side) L (m) 
 
Thickness of wooden underlay d (m) 
Vapour diffusion coefficient of wood δv (m2/s) (around 2 ·10-6) 
Initial relative humidity of wood φ0 (-). 
Thermal conductivity of  wood λroof (W/mK) 
Thermal resistance of insulation layer on top of the moisture tight roof membrane Rr (m2K/W). 
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Effective leakage area of attic floor/ceiling  Ac(m

2) 
U-value of the ceiling floor, Uc (W/m2/K) 
 
Indoor temperature Ti  (ºC). 
Mean and standard deviation of indoor moisture supply vv ∆∆ σµ  (kg/m3) 

 
Year number for weather data, 1-30 (-) 
 
 

The climate data is given for 30 years. Its yearly simulation starts the first of July. 
Fixed data: 

The data contains the equivalent outdoor temperature assuming: 

KW/m47.0 2== rsol αα  

 
Surface resistance at the inside and outside of attic 

s/m360K/Wm13.0K/Wm04.0 22 === sisese ZRR  

Initial temperature of wood 15 ºC. 
 
 
7. OUTPUT DATA 
 
1. [Peak Mould Growth index of the year (-)  Heat loss through the attic floor during January (kWh) ] 
2. Hourly values of: 
 [Attic temperature (ºC) Relative humidity (-) Mould growth index (-) Heat loss through ceiling (W)]  
The temperature and relative humidity is for the surface of the roof underlay. 
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1. Objectives of Common Exercise 4 

Annex 55’s Subtask 2 ‘Probabilistic tools’ aims at developing a probabilistic methodology to predict the 
energy savings of retrofitting measures while concurrently assessing the risk of potential hygrothermal 
failure.  In the final stage of the Annex it should be possible to apply this methodology in a generic way 
to e.g. make decisions on retrofitting measures for a typical building stock.  The subtask’s prime target 
is to get familiar with probabilistic methodologies, to investigate the limits and possibilities of stochastic 
models for our specific problems, to consider possible bottle necks for applications in the field of buil-
ding physics, etc.  Three common exercises (CE) have already been executed within Subtask 2: CE1 
aimed at exploring qualitative probabilistic tools, CE2 focused on quantitative uncertainty analysis, and 
CE3 targeted methods for sensitivity analysis. 
The topic of CE4 is the metamodelling of the hygrothermal performance of cold attics, particularly the 
mould growth in the attic and the heat loss to the attic.  Metamodelling techniques are an essential ele-
ment of probabilistic tools, since the execution time for the deterministic core model often is a restricti-
ve factor.  This implies that only a small number of runs are actually feasible, which hinders the appli-
cation of standard methods for uncertainty and sensitivity analysis or for performance and robustness 
optimization.  To resolve this, an approximate surrogate model – or metamodel – is fitted on the limited 
Monte Carlo set, which is then used instead of the original model for the further exploration and/or op-
timization.  The primary aim of CE4 is thus to explore approaches for metamodelling.  As simulation ti-
me is a primary motivation for metamodelling though, the influence of the initial sample size forms an 
important focus point in this CE.  The choice of methods is free, and CE 4 hence generally targets an 
overview of different metamodelling methods and a comparison of their efficiency. 
 

2. General description of the Exercise 

As was done in the previous common exercise, a common calculation object and tool is used, to avoid 
interference from deviations in modelling and/or simulation approaches. The given cold attic model de-
termines the cold attic performances – heat loss & mould growth – in function of 15 different input pa-
rameters, each with its specific distribution. 
An introduction to the physical basis of the cold attic model has been given earlier, in the instruction for 
CE3, and you are referred to that instruction document for further information.  The physical model has 
been implemented in Matlab, and Cold_Attic_4.m is provided.  The model uses 15 different input para-
meters – material properties, component characteristics, geometric dimensions, climate values – to 
compute 2 outcomes – the yearly peak mould growth index (PMG, -) for the wooden underlay, and the 
cumulated heat loss through the ceiling in January (CHL, kWh/m

2
).  For detailed analyses, hourly valu-

es of the surface temperature and surface relative humidity of the wooden underlay, mould growth in-
dex on the wooden underlay and the ceiling heat losses are also provided by the program. 
The 15 different input parameters are collected in Table 1.  Table 1 equally gives the related symbol in 
the .m-file, and the probability distribution of each parameter.  Two types of distributions are used: uni-
form distributions U(xlow,xupp), and normal distributions N(xavg,xstd).  In the former, xlow and xupp indicate 
respectively the lower and upper limit of the uniform distribution; in the latter, xavg and xstd indicate the 
average and standard deviation respectively of the normal distribution.  For all normally distributed pa-
rameters, a lower limit of 0 is moreover implicitly assumed: all samples resulting in values lower than 0 
are to be replaced by 0. 



Important in the table is the range for the U-value of the ceiling: since the resulting metamodel must be 
applicable for the cold attic before as well as after the application of (extra) floor insulation, a wide ran-
ge of values is put forward.  Other important changes in relation to CE3 are: 

 the range for the ‘leakage area per m² of ceiling Ac’ is reoriented to more realistic values; 

 the ‘year of climate data used’ is to be fixed on year 5, thus excluding climate variations; 
 

Table 1: variable input parameters, .m-file symbol, probability distribution 

input parameter symbol distribution 
Height of building H (m) H U(4,8) 
Area of ceiling and roof A (assumed equal) (m

2
) Area U(50,200) 

Orientation of one of eave sides (-) BSangle U(0,180) 
Venting area per meter eave Ae (m

2
/m) Ae U(0.001,0.05) 

Length of building (eave side) L (m) Length U(7,20) 
Thickness of wooden underlay d (m) d U(0.010,0.020) 
Vapour diffusivity of wood δv (m

2
/s) deltav N(10

-6
,2 10

-7
) 

Initial relative humidity of wood φ0 (-) startRH U(0.5,0.9) 
Thermal conductivity of wood λroof (W/mK) lambda N(0.13,0.02) 
Resistance of roof insulation Rr (m

2
K/W) Rr U(0,1) 

Leakage area per m
2
 of ceiling Ac (m

2
/m

2
)  Ac U(10

-5
,5 10

-5
) 

U-value of the ceiling Uc (W/m
2
K) Ufloor U(0.2,5) 

Indoor temperature Ti (ºC) Ti N(20,1.5) 
Indoor moisture supply (kg/m

3
) MS N(0.005,0.002) 

Year of climate data used (-) Year fixed value: 5 
 
In this CE, the main aim of the metamodelling efforts is ‘design space approximation’: the goal is to ob-
tain a quicker approximate model to stand in for the original model.  The approximate model therefore 
must mimic the original model as good as possible over the entire parameter space.  
In all cases, the quality of the developed metamodels will be assessed by comparison with the original 
model at 100 reference points in the parameter space.  The input parameters’ values for all reference 
points are given, but these samples should in no way be used to guide the metamodelling. 
To (virtually) account for limitations on calculation time, the metamodelling is to happen based on four 
different initial sample sizes, consisting of 5, 15, 50 and 150 points.  The actual sampling designs can 
be freely chosen.  The small sample sizes allow evaluation of supersaturated metamodelling designs, 
while the larger sample sizes permit assessment of actual metamodelling methods.  Only information 
obtained from a single sample set can be used in the metamodelling process: no information of inde-
pendent analyses may be imported. 
A first introduction to metamodelling techniques and approaches can be found in literature.  Exemplary 
publications are: 

 Simpson TW, Peplinski JD, Koch PN, Allen JK,  2001. Metamodels for computer-based engi-
neering design: survey and recommendations, Engineering with Computers 17, 129-150; 

 Jin R, Chen W, Simpson TW, 2001, Comparative studies of metamodelling techniques under 
multiple modelling criteria, Structural and Multidisciplinary Optimisation 23, 1-13; 

 Kleijnen JPC, Sargent RG, 2000. A methodology for fitting and validating metamodels in si-
mulation, European Journal of Operational Research 120, 14-29; 

 JohnsonRT, Montgomery DC, Jones B, Parker PA, 2010. Comparing computer experiments 
for fitting metamodels, Journal of Quality Technology 42, 86-102; 

These four publications are provided together with this common exercise. 
 

3. Task specification for the Exercise 

3.1 Metamodelling on 5 initial samples 

Make 5 initial simulations with the provided cold attic model.  Use these 5 sets of input parameters and 
simulation outcomes to develop a metamodel for the cold attic’s CHL and PMG.  Calculate the meta-
model’s output for the 100 reference points (coordinates given in the excel file). 
 
 



3.2 Metamodelling on 15 initial samples 

Make 15 initial simulations with the provided cold attic model.  Use the 15 sets of input parameters and 
simulation outcomes to develop a metamodel for the cold attic’s CHL and PMG.  Calculate the meta-
model’s output for the 100 reference points (coordinates given in the excel file). 
 

3.3 Metamodelling on 50 initial samples 

Make 50 initial simulations with the provided cold attic model.  Use the 50 sets of input parameters and 
simulation outcomes to develop a metamodel for the cold attic’s CHL and PMG.  Calculate the meta-
model’s output for the 100 reference points (coordinates given in the excel file). 
 

3.4 Metamodelling on 150 initial samples 

Make 150 initial simulations with the provided cold attic model. Use these 150 sets of input parameters 
and simulation outcomes to develop a metamodel for the cold attic’s CHL and PMG.  Calculate the 
metamodel’s output for the 100 reference points (coordinates given in the excel file). 
 

4. Requested output of the exercise 

Common Exercise 4 participants are requested to deliver two documents: 
1. a .xls-file corresponding to the predefined ST2_CE4_country_institute.xls, containing the nu-

merical results: in each of the four worksheets, the input parameters and the simulation outco-
mes for the 5/15/50/150 initial modelling simulations are to be provided, as well as the 100 si-
mulation outcomes from the final metamodelling simulations for the given reference points. 

2. additionally, a .doc-file corresponding to the predefined ST2_CE4_country_institute.doc, short-
ly describing the methodologies applied for the different metamodelling exercises; 

Note that the given ST2_CE4_country_institute.xls and ST2_CE4_country_institute.doc have to be re-
named to the participant’s actual country and institute name, as e.g. ST2_CE4_Belgium_KUL.xls.  The 
two files are to be sent to Hans Janssen: hans.janssen@bwk.kuleuven.be.  Deadline for submission 
of your results is March 30 2012. 
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1. Objectives of Common Exercise 5 

Annex 55’s Subtask 2 ‘Probabilistic tools’ deals with developing a probabilistic methodology to predict 
the energy savings of retrofitting measures while concurrently assessing the risk of potential 
hygrothermal failure. The subtask’s prime target is to get familiar with probabilistic methodologies, to 
investigate the limits and possibilities of stochastic models for our specific problems, to consider 
possible bottle necks for applications in the field of building physics, etc. Four common exercises (CE) 
have already been executed within Subtask 2: CE1 aimed at exploring qualitative probabilistic tools, 
CE2 focused on quantitative uncertainty analysis, CE3 targeted methods for sensitivity analysis and 
CE4 dealt with metamodelling. 
In the final stage of the Annex it is the aim to apply the developed methodology in a generic way by 
making decisions on retrofitting measures for a typical building stock. Hence, this last common 
exercise within ST2, CE5, will continue and combine the work done so far: stochastic modeling of 
benefits and risks, but now on a larger scale and from an economic perspective. To limit the work load, 
we stick to the Swedish attic model (see ST2-CE3 and CE4). Global objective is to determine the most 
profitable attic renovation measure for a neighbourhood of 237 dwellings. Instead of the earlier 
cumulated heat loss and peak mold growth indicators (see CE3 and CE4), now the overall cost is 
assumed the performance criterion.  
So you can imagine yourself being a consultant for an ESCO (Energy Saving Company) that will 
renovate the attics of all 237 dwellings. Different renovation measures (such as adding attic floor 
insulation, increasing air tightness of ceiling, closing ventilation gaps,…) can be applied (and if 
relevant combined), but of course each renovation measure corresponds to a certain cost, will result in 
certain benefits (energy savings) and may result in hygrothermal risks (mould growth). Your task is to 
come up with the renovation measure (applicable to all dwellings) that results in the largest overall 
profit within a timespan of ten years. 

2. General description of the Exercise 

As was done in the previous common exercise, a common calculation object and tool is used, to avoid 
interference from deviations in modelling and/or simulation approaches. The cold attic model, used in 
CE3 and CE4, has been reoriented to tackle different renovation measures. An introduction to the 
physical basis of the cold attic model has been given earlier, in the instruction for CE3, and you are 
referred to that instruction document for further information. The updated physical model has been 
implemented in Matlab, and Cold_Attic_5.m is provided. Compared to the previous version, now a 
series of subsequent 10 years will be calculated, starting at the year indicated in the input file. 
 
The model allows the following scenarios for renovation: 

1. Increasing the insulation level of the attic floor 
2. Increasing the airtightness of the attic floor 
3. Sealing the ventilation gaps at the eaves. 

 
As said, different scenarios can be combined. The expected outcome is the pdf’s of the overall profit 
over ten years for the different scenarios. 
 



As in CE4, the Swedish attic model uses 15 different input parameters: material properties, component 
characteristics, geometric dimensions, climate values, to compute 2 outcomes for each year: the 
yearly peak mould growth index (PMG, -) for the wooden underlay, and the heat loss through the 
ceiling cumulated over the heating season (CHL, kWh). The results are provided as one column with 
20 values: 10 yearly PMG’s, followed by 10 yearly CHL’s. 
 
The 14 different input parameters for the original state of the dwellings are collected in Table 1. Table 
1 equally gives the related symbol in the .m-file, and the probability distribution of each parameter. 
Two types of distributions are used: uniform distributions U(xlow,xupp), and normal distributions 
N(xavg,xstd). In the former, xlow and xupp indicate respectively the lower and upper limit of the uniform 
distribution; in the latter, xavg and xstd indicate the average and standard deviation respectively of the 
normal distribution. For all normally distributed parameters, a lower limit of 0 is moreover implicitly 
assumed: all samples resulting in values lower than 0 are to be replaced by 0. 
 

Table 1: variable input parameters, corresponding .m-file symbol and probability distribution for the 
original state of the dwellings 

input parameter symbol distribution 

   
Height of building H (m) H U(4,8) 
Area of ceiling and roof A (m

2
) Area U(50,200) 

Orientation of one of eave sides (-) BSangle U(0,180) 
Venting area per meter eave Ae (m

2
/m) Ae U(0.01,0.05) 

Length of building (eave side) L (m) Length U(7,20) 
Thickness of wooden underlay d (m) d U(0.01,0.02) 
Vapour diffusivity of wood δv (m

2
/s) deltav N(10

-6
,2 10

-7
) 

Initial relative humidity of wood φ0 (-) startRH U(0.5,0.9) 
Thermal conductivity of wood λroof (W/mK) lambda N(0.13,0.02) 
Resistance of roof insulation Rr (m

2
K/W) Rr U(0,1) 

Effective leakage area per m² of ceiling Ac (m
2
/m²) Ac U(10

-5
,10

-4
) 

U-value of the ceiling Uc (W/m
2
K) Uc U(1,3) 

Indoor temperature Ti (ºC) Ti N(20,1.5) 
Indoor moisture supply (kg/m

3
) MS N(0.005,0.002) 

 
 
For the different renovation measures the following input parameters change: 
 

1. Increasing the insulation level of the attic floor will reduce the U-value of the ceiling (no lower 
limits of Ufloor are given). Due to uncertainties in workmanship the finally obtained U-value 
has a normal distribution around the target value with a standard deviation of 10% of the 
target value. 
 

 U-value of the ceiling Uc
new

 (W/m
2
K) Uc N(Uc,target,0.1*Uc,target) 

 
2. Increasing the airtightness of the attic floor means reducing the effective leakage area of the 

ceiling Ac to a new distribution. The lowest achievable effective leakage area is considered to 
be 5*10

-8
 m²/m². The finally obtained leakage area has a normal distribution around the target 

value with a standard deviation of 20% of the target value. 
 

 Effective leakage area of ceiling Ac
new

 (m
2
)  Ac  N(Ac,target,0.2* Ac,target) 

 
3. Sealing the ventilation gaps at the eaves diminishes the venting area per meter eave Ae. As 

for the airtightness of the attic floor, there is a lower limit on the achievable closing of the 
venting gaps: 2.5*10

-5
 m²/m. The finally obtained venting area per meter eave has a normal 

distribution around the target value with a standard deviation of 40% of the target value. 
 
 Venting area per meter eave Ae

new
 (m

2
/m)  Ae  N(Ae,target,0.4* Ae,target) 

 
 
Of course, each renovation scenario corresponds to a certain cost. Table 2 gives for each scenario 
mean and spread on the expected costs.  



 
Table 2: costs related to the different renovation measures 

renovation measure cost  

1.insulating attic floor 
 

8.0+1.2*(1/Uc
new 

- 1/Uc
old

)  euro/m² 

2. increasing air tightness of attic floor 
 

5.0+3.0*10
-7

/Ac
new

  euro/m² 

3.sealing ventilation gaps at the eaves 12.0 + 3.0*10
-4

/Ae
new

 euro/m 

 
Repair cost if PMG > 5 

 
58.0 

 
euro/m² 

 
 
The largest overall profit within the timespan of 10 years is evaluated based on the net present value 
(NPV), simplified as: 
 

            
         

 

      

  

   

 

 
in which I0 corresponds to the initial investment of the renovation measure, IM is the maintenance cost, 
ΔKE the change in annual energy costs due to the renovation measure, rE the inflation corrected mean 
annual increment in energy cost (0<rE<1) and a the inflation corrected present value factor (0<a<1). 
Note that no corrections on the maintenance cost are taken into account, but that the maintenance 
cost is simplified as an overall repair cost which has to be taken into account in case the peak mould 
growth index (PMG , -) for the wooden underlay exceeds a value of PMG≥5 within 10 years (see Table 
2). This overall repair costs corresponds to drying up the roof construction, renovation of the roof from 
mould and installation of a controlled ventilation system to avoid mould in the future. Therefore, it is 
assumed that this repair cost has to be taken into account only once even if the PMG exceeds a 
value of 5 multiple times. 
The inflation corrected present value factor and mean annual increment in energy cost have to be 
treated as normal distribution with mean and standard deviation given in Table 3. The annual change 
in energy costs corresponds to: 
 

                    

 
with PE the price per kWh (see Table 3) and ΔEuse,heating the difference in yearly cumulated heat loss 
through the ceiling between original state and after applying the renovation measure. 
 

Table 3: probability distribution functions for the present value factor, mean annual increment in 
energy cost and energy price 

 symbol distribution 

Inflation corrected present value factor 
 

a N(0.07,0.015) 

Inflation corrected mean annual increment  
in energy cost 
 

rE N(0.065,0.0175) 

Energy price per kWh PE 0.10 euro/kWh 

 
 
To limit the scope of the exercise, we will not take possible climate change into account. As in ST2-
CE4, 30 years of climate data are provided, all of them assumed equally realistic for the near future. 
The provided Matlab-code calculates over 10 subsequent years, starting at the year indicated in the 
input file. Hence, the first 21 years of provided climate data may be treated as a uniform distribution:  
 

Year of climate data used (-) Year U(1,21) 
 
Note, that for this uniform distribution, of course only discrete integer values are allowed. 
 



3. Task specification for the Exercise 

3.1 Optimal insulation thickness for scenario 1  

Increasing the insulation level of the attic floor (scenario 1) can be seen as the first and easiest choice 
for an ESCO to apply. Therefore, as an introductory step, participants are requested to determine the 
optimal U-value of the ceiling Uc,target for scenario 1: increasing the insulation level of the attic floor 
without changing the air tightness of the ceiling or closing venting gaps. The optimal Uc,target is 
determined as the U-value resulting in the maximum total net present value (NPVtotal) (timespan of ten 
years) when applied to all 237 dwellings. For each Uc,target the NPVtotal can be calculated as the integral 
of the pdf of NPV over the dwelling distribution. To compare results, the NPVtotal as a function of Uc,target, 
as well as the cdf of the NPV for the optimal Uc,target are to be provided in the predefined .xls-file. Two 
cases are to be considered: 

a) In a first case only the benefits are investigated. This means that the risks on mould growth 
can be neglected (repair cost IM=0). 

b) In a second step, both benefits and risks are taken into account. If the PMG reaches a value 
of 5 in a year, the repair cost of Table 2 has be incorporated in the NPV. 

 

3.2 Optimal solution  

Participants are requested to determine the optimal solution, by applying one of the three given 
scenarios or a combination of them. For each of the scenarios the level of improvement can be varied. 
The optimal solution corresponds to the solution with the maximum NPVtotal. So, the NPVtotal for the 
different scenarios are to be provided and if available, the pdf’s of the NPV for the different scenarios 
can be given as well in the predefined .xls-file. In addition, a short text in the predefined .doc-file 
should document the applied approach.  

4. Requested output of the exercise 

Common Exercise 5 participants are requested to deliver two documents: 
1. a .xls-file corresponding to the predefined ST2_CE5_country_institute.xls, containing the nu-

merical output of the NPVtotal as a function of the insulation thickness and pdf’s of the NPV 
over ten years when applying only extra attic floor insulation (see 3.1) and presenting the 
results for the optimal solution (see 3.2). 

2. additionally, a .doc-file corresponding to the predefined ST2_CE5_country_institute.doc, short-
ly describing the used methods: variations taken into account, applied technique: Monte Carlo-
analysis, number of runs, sampling strategy, metamodelling,…. 

Note that the given ST2_CE5_country_institute.xls and ST2_CE5_country_institute.doc have to be re-
named to the participant’s actual country and institute name, as e.g. ST2_CE5_Belgium_KUL.xls. The 
two files are to be sent to Staf Roels: staf.roels@bwk.kuleuven.be. Deadline for submission of the 
results is October 15

th
 2012. 
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