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Figure 1: Global reduction in energy-related CO2 emissions needed by 2050 to
achieve the 1.5°C climate target (IRENA, 2021a)
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Figure 2: The four different generations of conventional
district heating systems and their energy sources.
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Figure 2: The four different generations of conventional
district heating systems and their energy sources.
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The performance of water tank is limited (capacity & volumne).

* energysus.

Thermal energy storage (TES) plays a key role in building active energy management.

Phase Change Material (PCM) energy storage systems take advantages of the sensible and

latent heat, which can further increase system efficiency and reduce the space.

Typical PCM profile
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Figure 3: Theoretical performance of PCM

Figure 4: PCM Enthalpy change with temperature (Kong et al., 2022)
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Objectives
1. Assess the performance of integrating advanced storages (PCM) in DH;
2. Quantify and analyze the flexibility potential.
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PCM Material - RT65

Phase change margin [°C] 58-65

Heat storage capacity £7.5% [kJ/kg] 150 (from 55 to 72 °C) / 42 Wh/kg

Specific heat capacity [kJ/kg K] 2

Volume expansion [%] 11.3

Density solid [kg/I] 0.88

Density liquid [kg/I] 0.78

Max operation temperature [°C] 85 Figure 4: RT 65 from RUBITHERM®
Heat conductivity (both phases) 0.2

[W/(m°K)]
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Figure 4: RT 65 from RUBITHERM®

Heat conductivity (both phases)
[W/(m*K)]

84 kJ/kg for water when AT=20 °C
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Enthalpy change in both melting and congealing
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Figure 5: RT 65 enthalpy change in both melting and congealing process
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Flexibility KPls
Names  Equaons Rt
Flexibi(lli:tlz/)factor F, flp Pdt — fhp Pdt (Péan et al., 2019)
J,,Pdt+ [, Pdt
—Alyeat discharged (Le Dréau & Heiselberg, 2016)
Shifting efficiency Nshift = ALy ot charged
(n_shift)

FF: the ability of shifting load to low-penalty period, [-1, 1];

n_shift: the load reduction ratio during active demand response, [0, 1].
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Figure 6: Load profile of the selected Scandinavian building district Figure 7: Scenario of integrating PCM with water tank
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Figure 6: Load profile of the selected Scandinavian building district
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Figure 7: Scenario of integrating PCM with water tank
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Results — Flexibility KPIls and performance evaluation

Scenario A: DH integrated with water tank without PCM

I Scenario A Scenario B

Mean temp in TES [°C] 45 57
STD of temp in TES [°C] 6 9
Average discharging time of a day 9 11
[h]
FF [-] 0.76 0.80
n_shift [%] 26 30
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Results — Temperature profile in a typical day
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Conclusions

1. TES with PCM vyields a longer cycle of discharging for around 2 hours on a typical day.

2. The performance of TES-PCM in terms of FF and n_shift indicates that PCM has a substantial
positive impact on demand-side flexibility.

3. One limitation is that the granularity of PCM model needs to be improved.
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